Skip to main content
Log in

Synergistic effect of BN and MWCNT hybrid fillers on thermal conductivity and thermal stability of ultra-high-molecular-weight polyethylene composites with a segregated structure

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The thermal conductivity of ultra-high-molecular-weight polyethylene (UHMWPE)/boron nitride particle (BNp), UHMWPE/BN sheet (BNs), and UHMWPE/(BN+MWCNT) hybrid filler composites with segregated structures was investigated using a powder mixture and hot-pressing process. The morphology of the fillers and composites was observed by optical microscopy, atomic force microscopy, and scanning electron microscopy, respectively. The results showed that the torispherical BNp filler contained particles of various dimensions, ranging from 200 to 500 nm, while the saucer-shaped BNs filler with irregular prominence on the edge exhibited uniformity of size, with widths of 100–150 nm and height of 3–5 nm. The networks of thermally conductive fillers and the interfacial thermal resistance at the filler boundaries played a major role in the thermal conductivity of the segregated composites, as revealed in an almost linear enhancement of conductivity with increasing filler content. In comparison to the 2D saucer-shaped BNs fillers, the varied size of the 0D BNp was more conducive to the formation of effective filler stacks, as the gaps between larger BNp fillers facilitated access by the smaller BNp fillers. The thermal conductivity of the UHMWPE composite with the addition of 50 wt% BNp increased from 0.4591 to 1.385 W/m·K, approximately 16.2 % higher than that of the UHMWPE/BNs composite (1.192 W/m·K). The synergistic effect of the BN+MWCNT hybrid fillers helped to improve the thermal conductivity of the UHMWPE composites. Compared with the 0D BNp filler, the 2D BNs was more readily entangled with 1D MWCNT and formed compact and overlapping thermally conductive networks. As such, the thermal conductivity of the UHMWPE/(BNs+MWCNT) hybrid filler composite (1.641 W/m·K for 50 wt% filler content) was superior to that of the UHMWPE/(BNp+MWCNT) composite (1.533 W/m·K). Additionally, the crystallization behavior and thermal stability of UHMWPE was almost unchanged in the presence of BN and BN+MWCNT hybrid fillers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yu AP, Ramesh P, Sun XB, Bekyarova E, Itkis ME, Haddon RC (2008) Enhanced thermal conductivity in a hybrid graphite nanoplatelet–carbon nanotube filler for epoxy composites. Adv Mater 20:4740–4744

    Article  CAS  Google Scholar 

  2. Zhou WY, Qi SH, Zhao HZ, Liu NL (2007) Thermally conductive silicone rubber reinforced with boron nitride particle. Polym Compos 28:23–28

    Article  CAS  Google Scholar 

  3. Hou ZL, Song WL, Wang P, Meziani MJ, Kong CY, Anderson A, Maimaiti H, LeCroy GE, Qian HJ, Sun YP (2014) Flexible graphene−graphene composites of superior thermal and electrical transport properties. ACS Appl Mater Interfaces 6:15026–15032

    CAS  Google Scholar 

  4. Ren F, Ren PG, Di YY, Chen DM, Liu GG (2011) Thermal, mechanical and electrical properties of linear low-density polyethylene composites filled with different dimensional SiC particles. Polym Plast Technol 50:791–796

    Article  CAS  Google Scholar 

  5. Zhou WY, Qi SH, An QL, Zhao HZ, Liu NL (2007) Thermal conductivity of boron nitride reinforced polyethylene composites. Mater Res Bull 42:1863–1873

    Article  CAS  Google Scholar 

  6. Chen BS, Luan DC, Huang J, Zhang J (2015) Enhanced thermal conductivity and wear resistance of polytetrafluoroethylene composites through boron nitride and zinc oxide hybrid fillers. J Appl Polym Sci 132:42302

    Google Scholar 

  7. Zhou WY, Yu DM, Min C, Fu YP, Guo XS (2009) Thermal, dielectric, and mechanical properties of SiC particles filled linear low-density polyethylene composites. J Appl Polym Sci 112:1695–1703

    Article  CAS  Google Scholar 

  8. Biercuk MJ, Llaguno MC, Radosavljevic M, Hyun JK, Johnson AT, Fischer JE (2002) Carbon nanotube composites for thermal management. Appl Phys Lett 80:2767–2769

    Article  CAS  Google Scholar 

  9. Marconnet AM, Yamamoto N, Panzer MA, Wardle BL, Goodson KE (2011) Thermal conduction in aligned carbon nanotube_polymer nanocomposites with high packing density. ASC Nano 5:4818–4825

    Article  CAS  Google Scholar 

  10. Yu AP, Ramesh P, Itkis ME, Bekyarova E, Haddon RC (2007) Graphite nanoplatelet-epoxy composite thermal interface materials. J Phys Chem C 111:7565–7569

    Article  CAS  Google Scholar 

  11. Zhou WY (2011) Thermal and dielectric properties of the AlN particles reinforced linear low-density polyethylene composites. Thermochim Acta 512:183–188

    Article  CAS  Google Scholar 

  12. Zhou WY, Qi SH, Li HD, Shao SY (2007) Study on insulating thermal conductive BN/HDPE composites. Thermochim Acta 452:36–42

    Article  CAS  Google Scholar 

  13. Zhang XL, Shen LY, Wu H, Guo SY (2013) Enhanced thermally conductivity and mechanical properties of polyethylene (PE)/boron nitride (BN) composites through multistage stretching extrusion. Compos Sci Technol 89:24–28

    Article  CAS  Google Scholar 

  14. Kikugawa G, Desai TG, Keblinski P, Ohara T (2013) Effect of crosslink formation on heat conduction in amorphous polymers. J Appl Phys 114:034302

    Article  Google Scholar 

  15. Ong ZY, Zhang G (2015) Efficient approach for modeling phonon transmission probability in nanoscale interfacial thermal transport. Phys Rev B 91:174302

    Article  Google Scholar 

  16. Zhou WY, Wang CF, An QL, Ou HY (2008) Thermal properties of heat conductive silicone rubber filled with hybrid fillers. J Compos Mater 42:173–187

    Article  CAS  Google Scholar 

  17. Agari Y, Ueda A, Nagai S (1991) Thermal conductivities of composites in several types of dispersion systems. J Appl Polym Sci 42:1665–1669

    Article  CAS  Google Scholar 

  18. Ren PG, Di YY, Zhang Q, Li L, Pang H, Li ZM (2012) Composites of ultrahigh-molecular-weight polyethylene with graphene sheets and/or MWCNTs with segregated network structure: preparation and properties. Macromol Mater Eng 297:437–443

    Article  CAS  Google Scholar 

  19. Jiang X, Yan DX, Bao Y, Pang H, Ji X, Li ZM (2015) Facile, green and affordable strategy for structuring natural graphite/polymer composite with efficient electromagnetic interference shielding. RSC Adv 5:22587–22592

    Article  CAS  Google Scholar 

  20. Pang H, Xu L, Yan DX, Li ZM (2014) Conductive polymer composites with segregated structures. Prog Polym Sci 39:1908–1933

    Article  CAS  Google Scholar 

  21. Liu KS, Ronca S, Andablo-Reyes E, Forte G, Rastogi S (2015) Unique rheological response of ultrahigh molecular weight polyethylenes in the presence of reduced graphene oxide. Macromolecules 48:131–139

    Article  CAS  Google Scholar 

  22. Agari Y, Ueda A, Tanaka M, Nagai S (1990) Thermal conductivity of a polymer filled with particles in the wide range from low to super-high volume content. J Appl Polym Sci 40:929–941

    Article  CAS  Google Scholar 

  23. Lin F, Bhatia GS, Ford JD (1993) Thermal conductivities of powder-filled epoxy resins. J Appl Polym Sci 49:1901–1908

    Article  CAS  Google Scholar 

  24. Yu JC, Sundqvist B, Tonpheng B, Andersson O (2014) Thermal conductivity of highly crystallized polyethylene. Polymer 55:195–200

    Article  CAS  Google Scholar 

  25. Zhang T, Luo TF (2012) Morphology-influenced thermal conductivity of polyethylene single chains and crystalline fibers. J Appl Phys 112:094304

    Article  Google Scholar 

  26. Zhang LS, Fan W, Liu TX (2015) A flexible free-standing defect-rich MoS2/graphene/carbon nanotube hybrid paper as a binder-free anode for high-performance lithium ion batteries. RSC Adv 5:43130–43140

    Article  CAS  Google Scholar 

  27. Liu MK, Du YF, Miao YE, Ding QW, He SX, Tjiu WW, Pan JS, Liu TX (2015) Anisotropic conductive films based on highly aligned polyimide fibers containing hybrid materials of graphene nanoribbons and carbon nanotubes. Nanoscale 7:1037–1046

    Article  CAS  Google Scholar 

  28. Ren PG, Yan DX, Chen T, Zeng BQ, Li ZM (2011) Improved properties of highly oriented graphene/polymer nanocomposites. J Appl Polym Sci 121:3167–3174

    Article  CAS  Google Scholar 

  29. Kim H, Macosko CW (2008) Morphology and properties of polyester/exfoliated graphite nanocomposites. Macromolecules 41:3317–3327

    Article  CAS  Google Scholar 

  30. Kim H, Miura Y, Macosko CW (2010) Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater 22:3441–3450

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial support from the National Foundation of China and Shaanxi Province (grant nos. 51273161 and 2015JM2073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng-Gang Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, PG., Si, XH., Sun, ZF. et al. Synergistic effect of BN and MWCNT hybrid fillers on thermal conductivity and thermal stability of ultra-high-molecular-weight polyethylene composites with a segregated structure. J Polym Res 23, 21 (2016). https://doi.org/10.1007/s10965-015-0908-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0908-y

Keywords

Navigation