Skip to main content
Log in

Synthesis and properties of segmented polyurethanes with hydroquinone ether derivatives as chain extender

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Two series of 4, 4′-diphenylmethane diisocyanate (MDI) type polyurethanes based on poly(tetramethyleneoxide) glycol (PTMO) and polybutylene adipate glycol (PBA) as soft segments were synthesized by one-step bulk polymerization process. Various hard segments were obtained from hydroquinone ether derivatives with or without ether oxygen structure bonded with the aromatic units in main chain, including hydroquinone (HQE), hydroquinone bis(b-hydroxyethy) ether (HQEE), and 4-hydroxyethyl ethyl oxygen-1-hydroxy ethyl benzene ether (HQEE-L) as chain extenders. The effect of chain extender structure on aggregation structure, thermal and mechanical properties was studied. ATR-FTIR suggested that hydrogen bonding interactions were significantly changed in the presence of flexible ether oxygen structure in hard segment. HQEE-based polyurethanes and HQEE-L-based polyurethanes displayed microphase separation and microphase mixing behavior respectively based on DMA and DSC results. XRD curves confirmed that flexible ether oxygen chain bonded with the rigid aromatic units played a balancing role in the steric effect caused by aromatic chain extender. Thermal properties of polyurethanes were affected mainly by the hard segment packing while mechanical properties were influenced by both phase separation and phase mixing which possess strong hydrogen bonding interactions. The excellent elongation in PTMO/HQEE-L and the high ultimate tensile strength in PBA/HQEE-L can be attributed to the phase mixing with strong hydrogen bonding interactions presented in HQEE-L-based polyurethanes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Koerner H, Kelley JJ, Vaia RA (2008) Transient microstructure of low hard segment thermoplastic polyurethane under uniaxial deformation. Macromolecules 41:4709–4716

    Article  CAS  Google Scholar 

  2. Velankar S, Cooper SL (2000) Microphase separation and rheological properties of polyurethane melts. 2. Effect of block incompatibility on the microstructure. Macromolecules 33:382–394

    Article  CAS  Google Scholar 

  3. Bagdi K, Molnár K, Kállay M, Schön P, Vancsó JG, Pukánszky B (2012) Quantitative estimation of the strength of specific interactions in polyurethane elastomers, and their effect on structure and properties. Eur Polym J 48:1854–1865

    Article  CAS  Google Scholar 

  4. Lopes RVV, Loureiro NPD, Pezzin APT, Gomes ACM, Resck IS, Sales MJA (2013) Synthesis of polyols and polyurethanes from vegetable oils-kinetic and characterization. J Polym Res 20:238–246

    Article  Google Scholar 

  5. Chen S, Wang Q, Wang T (2012) Preparation, tensile, damping and thermal properties of polyurethanes based on various structural polymer polyols: effects of composition and isocyanate index. J Polym Res 19:9994–10000

    Article  Google Scholar 

  6. Klinedinst DB, Yilgör E, Yilgör I, Beyer FL, Wilkes GL (2005) Structure-property behavior of segmented polyurethaneurea copolymers based on an ethylene-butylene soft segment. Polymer 46:10191–10201

    Article  CAS  Google Scholar 

  7. Yanagihara Y, Osaka N, Murayama S, Saito H (2013) Thermal annealing behavior and structure development of crystalline hard-segment domain in a melt-quenched thermoplastic polyurethane. Polymer 54:2183–2189

    Article  CAS  Google Scholar 

  8. Liu X, Cheng J, Zhang J (2014) Preparation of thermal plastic polyurethane-polystyrene block copolymer via UV irradiation polymerization. J Polym Res 21:544–551

    Article  Google Scholar 

  9. Rueda-Larraz L, D’Arlas BF, Tercjak A, Ribes A, Mondragon I, Eceiza A (2009) Synthesis and microstructure–mechanical property relationships of segmented polyurethanes based on a PCL-PTHF-PCL block copolymer as soft segment. Eur Polym J 45:2096–2109

    Article  CAS  Google Scholar 

  10. Xu Y, Petrovic Z, Das S, Wilkes GL (2008) Morphology and properties of thermoplastic polyurethanes with dangling chains in ricinoleate-based soft segments. Polymer 49:4248–4258

    Article  CAS  Google Scholar 

  11. Oprea S (2012) Novel quinoline-based polyurethane elastomers. The effect of the hard segment structure in properties enhancement. J Polym Res 19:1–9

    Article  CAS  Google Scholar 

  12. Kojio K, Nakashima S, Furukawa M (2007) Microphase-separated structure and mechanical properties of norbornane diisocyanate-based polyurethanes. Polymer 48:997–1004

    Article  CAS  Google Scholar 

  13. He Y, Zhang X, Runt J (2014) The role of diisocyanate structure on microphase separation of solution polymerized polyureas. Polymer 55:906–913

    Article  CAS  Google Scholar 

  14. Oprea S (2011) Molecular dynamics, thermo-mechanical and optical studies on benzidine chain extended polyurethane-urea. J Polym Res 18:1777–1785

    Article  CAS  Google Scholar 

  15. Miller JA, Lin SB, Hwang KK, Wu KS, Gibson PE, Cooper SL (1985) Properties of polyether-polyurethane block copolymers: effects of hard segment length distribution. Macromolecules 18:32–44

    Article  CAS  Google Scholar 

  16. Kuo M, Jeng R, Su W, Dai SA (2008) Iterative synthesis of extenders of uniform chain lengths for making thermo-reversible polyurethane supramolecules. Macromolecules 41:682–690

    Article  CAS  Google Scholar 

  17. Korley LTJ, Pate BD, Thomas EL, Hammond PT (2006) Effect of the degree of soft and hard segment ordering on the morphology and mechanical behavior of semicrystalline segmented polyurethanes. Polymer 47:3073–3082

    Article  CAS  Google Scholar 

  18. Yoon SC, Ratner BD (1988) Surface and bulk structure of segmented poly (ether urethanes) with perfluoro chain extenders. 2. FTIR, DSC, and X-ray photoelectron spectroscopic studies. Macromolecules 21:2392–2400

    Article  CAS  Google Scholar 

  19. Sheikhy H, Shahidzadeh M, Ramezanzadeh B, Noroozi F (2013) Studying the effects of chain extenders chemical structures on the adhesion and mechanical properties of a polyurethane adhesive. J Ind Eng Chem 19:1949–1955

    Article  CAS  Google Scholar 

  20. Oprea S (2010) The effect of chain extenders structure on properties of new polyurethane elastomers. Polym Bull 65:753–766

    Article  CAS  Google Scholar 

  21. Mishra AK, Narayan R, Raju K, Aminabhavi TM (2012) Hyperbranched polyurethane (HBPU)-urea and HBPU-imide coatings: effect of chain extender and NCO/OH ratio on their properties. Prog Org Coat 74:134–141

    Article  CAS  Google Scholar 

  22. Vlad S (2008) Influence of the chain extender length and diisocyanate amount on the thermal stability and mechanical properties of some polyurethanes. Mater Plast 45:394–397

    CAS  Google Scholar 

  23. Tatai L, Moore TG, Adhikari R, Malherbe F, Jayasekara R, Griffiths I, Gunatillake PA (2007) Thermoplastic biodegradable polyurethanes: the effect of chain extender structure on properties and in-vitro degradation. Biomaterial 28:5407–5417

    Article  CAS  Google Scholar 

  24. Orgilés-Calpena E, Arán-Aís F, Torró-Palau AM, Orgilés-Barceló C (2012) Influence of the chain extender nature on adhesives properties of polyurethane dispersions. J Disper Sci Technol 33:147–154

    Article  Google Scholar 

  25. Tong SN, Tsai SR, Lii JS, Wu P (1987) Aromatic diols as chain extender in PU reaction molding. J Elastom Plast 19:188–203

    Article  CAS  Google Scholar 

  26. Zha L, Wu M, Yang J (1999) Hydrogen bonding and morphological structure of segmented polyurethanes based on hydroquinone-bis (β-hydroxyethy) ether as a chain extender. J Appl Polym Sci 73:2895–2902

    Article  CAS  Google Scholar 

  27. Chang Z, Zhang M, Hudson AG, Orler EB, Moore RB, Wilkes GL, Turner SR (2013) Synthesis and properties of segmented polyurethanes with triptycene units in the hard segment. Polymer 54:6910–6917

    Article  CAS  Google Scholar 

  28. Barikani M, Fazeli N, Barikani M (2013) Study on thermal properties of polyurethane-urea elastomers prepared with different dianiline chain extenders. J Polym Eng 33:87–94

    Article  CAS  Google Scholar 

  29. Rogulska M, Kultys A, Podkościelny W (2007) Studies on thermoplastic polyurethanes based on new diphenylethane-derivative diols. II. Synthesis and characterization of segmented polyurethanes from HDI and MDI. Eur Polym J 43:1402–1414

    Article  CAS  Google Scholar 

  30. Kultys A, Rogulska M, Głuchowska H (2011) The effect of soft-segment structure on the properties of novel thermoplastic polyurethane elastomers based on an unconventional chain extender. Polym Int 60:652–659

    Article  CAS  Google Scholar 

  31. Cakić SM, Ristić IS, Krakovský I, Stojiljković DT, Bělský P, Kollová L (2014) Crystallization and thermal properties in waterborne polyurethane elastomers: influence of mixed soft segment block. Mater Chem Phys 144:31–40

    Article  Google Scholar 

  32. Mishra AK, Chattopadhyay DK, Sreedhar B, Raju K (2006) FT-IR and XPS studies of polyurethane-urea-imide coatings. Prog Org Coat 55:231–243

    Article  CAS  Google Scholar 

  33. Kumari S, Mishra AK, Krishna A, Raju K (2007) Organically modified montmorillonite hyperbranched polyurethane-urea hybrid composites. Prog Org Coat 60:54–62

    Article  CAS  Google Scholar 

  34. Walo M, Przybytniak G, Łyczko K, Piątek-Hnat M (2014) The effect of hard/soft segment composition on radiation stability of poly (ester-urethane) s. Radia Phys Chem 94:18–21

    Article  CAS  Google Scholar 

  35. Chattopadhyay DK, Mishra AK, Sreedhar B, Raju K (2006) Thermal and viscoelastic properties of polyurethane-imide/clay hybrid coatings. Polym Degrad Stabil 91:1837–1849

    Article  CAS  Google Scholar 

  36. Wen T, Wu M, Yang C (1999) Spectroscopic investigations of poly (oxypropylene) glycol-based waterborne polyurethane doped with lithium perchlorate. Macromolecules 32:2712–2720

    Article  CAS  Google Scholar 

  37. Lee HS, Wang YK, Hsu SL (1987) Spectroscopic analysis of phase separation behavior of model polyurethanes. Macromolecules 20:2089–2095

    Article  CAS  Google Scholar 

  38. Xu K, Zhang F, Zhang X, Hu Q, Wu H, Guo S (2014) Molecular insights into hydrogen bonds in polyurethane/hindered phenol hybrids: evolution and relationship with damping properties. J Mater Chem A 2:8545–8556

    Article  CAS  Google Scholar 

  39. Saralegi A, Rueda L, Fernández D’Arlas B, Mondragon I, Eceiza A, Corcuera MA (2013) Thermoplastic polyurethanes from renewable resources: effect of soft segment chemical structure and molecular weight on morphology and final properties. Polym Int 62:106–115

    Article  CAS  Google Scholar 

  40. Zhang Y, Xia Z, Huang H, Chen H (2009) Thermal degradation of polyurethane based on IPDI. J Anal Appl Pyrol 84:89–94

    Article  CAS  Google Scholar 

  41. Chattopadhyay DK, Webster DC (2009) Thermal stability and flame retardancy of polyurethanes. Prog Polym Sci 34:1068–1133

    Article  CAS  Google Scholar 

  42. Kulkarni P, Ojha U, Wei X, Gurung N, Seethamraju K, Faust R (2013) Thermal and mechanical properties of polyisobutylene‐based thermoplastic polyurethanes. J Appl Polym Sci 130:891–897

    Article  CAS  Google Scholar 

  43. Zhang C, Hu J, Wu Y (2014) Theoretical studies on hydrogen-bonding interactions in hard segments of shape memory polyurethane-III: isophorone diisocyanate. J Mol Struct 1072:13–19

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors greatly appreciated the financial support granted by the National Natural Science Foundation of China (Project No.21176017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jue Cheng or Junying Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Wang, T., Li, J. et al. Synthesis and properties of segmented polyurethanes with hydroquinone ether derivatives as chain extender. J Polym Res 22, 149 (2015). https://doi.org/10.1007/s10965-015-0792-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0792-5

Keywords

Navigation