Skip to main content
Log in

Rheological fingerprints of time-evolving polymer-particle interaction and sol–gel transition in silver pastes

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The performances of a conducting paste and the thick film fabricated from it depend critically on the dispersion state of the functional powders. Detailed mechanisms dictating the interactions between functional powder, surfactant, and, in particular, polymer binder that lead to optimum particle dispersion remain elusive in general. For a series of practical micrometer-sized silver pastes (with a powder content of ~47 wt% or 7 vol%, in a commonly used solvent α-terpineol), we reported rheological fingerprints (i.e., significantly promoted sample elasticity) suggesting that while the surfactant (stearic acid, SA) aids the initial, local (~1 nm) particle dispersion, the polymer binder (ethyl cellulose, EC) then becomes effective to help achieve larger-scale (~30 nm) particle dispersion, permitting the development of colloidal fractals and time-evolving microphase transition closely mimicking typical sol–gel transition. The enhanced particle dispersion is evidenced also by the scanning electronic microscope morphologies of dried printing thick films. Overall, similar phase transition had rarely been reported for metal pastes, yet the underlying particle dispersion seems crucial to achieve as (environmentally required) decreasing powder content makes a paste and the fabricated thick film increasingly unlikely to fulfill the percolated state desirable for efficient electron conduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lange FF (1989) Powder processing science and technology for increased reliability. J Am Ceram Soc 72:3–15

    Article  CAS  Google Scholar 

  2. Lewis JA (2000) Colloidal processing of ceramics. J Am Ceram Soc 83:2341–2359

    Article  CAS  Google Scholar 

  3. Sigmund WM, Bell NS, Bergström L (2000) Novel powder-processing methods for advanced ceramics. J Am Ceram Soc 83:1557–1574

    Article  CAS  Google Scholar 

  4. Phair JW (2008) Rheological analysis of concentrated zirconia pastes with ethyl cellulose for screen printing SOFC electrolyte films. J Am Ceram Soc 91:2130–2137

    Article  CAS  Google Scholar 

  5. Somalu MR, Brandon NP (2012) Rheological studies of nickel/scandia-stabilized-zirconia screen printing inks for solid oxide fuel cell anode fabrication. J Am Ceram Soc 95:1220–1228

    Article  CAS  Google Scholar 

  6. Somalu MR, Yufit V, Shapiro IP, Xiao P, Brandon NP (2013) The impact of ink rheology on the properties of screen-printed solid oxide fuel cell anodes. Int J Hydrogen Energy 38:6789–6801

    Article  CAS  Google Scholar 

  7. Murakami S, Ri K, Itoh T, Izu N, Shin W, Inukai K, Takahashi Y, Ando Y (2014) Effects of ethyl cellulose polymers on rheological properties of (La, Sr)(Ti, Fe)O3-terpineol pastes for screen printing. Ceram Int 40:1661–1666

    Article  CAS  Google Scholar 

  8. Inukai K, Takahashi Y, Murakami S, Ri K, Shin W (2014) Molecular weight dependence of ethyl cellulose adsorption behavior on (La, Sr)(Ti, Fe)O3−δ particles in organic solvent pastes and their printing properties. Ceram Int 40:12319–12325

    Article  CAS  Google Scholar 

  9. Wang SF, Dougherty JP, Huebner W, Pepin JG (1994) Silver-palladium thick-film conductors. J Am Ceram Soc 77:3051–3072

    Article  CAS  Google Scholar 

  10. Lin H-C, Lin P, Lu C-A, Wang S-F (2009) Effects of silver oxalate additions on the physical characteristics of low-temperature-curing MOD silver paste for thick-film applications. Microelectron Eng 86:2316–2319

    Article  CAS  Google Scholar 

  11. Hsu CP, Guo RH, Hua CC, Shih C-L, Chen W-T, Chang T-I (2013) Effect of polymer binders in screen printing technique of silver pastes. J Polym Res 20:1–8

    Article  CAS  Google Scholar 

  12. Lin JC, Wang CY (1996) Effects of surfactant treatment of silver powder on the rheology of its thick-film paste. Mater Chem Phys 45:136–144

    Article  CAS  Google Scholar 

  13. Bergström L, Shinozaki K, Tomiyama H, Mizutani N (1997) Colloidal processing of a very fine BaTiO3 powder—effect of particle interactions on the suspension properties, consolidation, and sintering behavior. J Am Ceram Soc 80:291–300

    Article  Google Scholar 

  14. Liu D-M (2000) Influence of dispersant on powders dispersion and properties of zirconia green compacts. Ceram Int 26:279–287

    Article  CAS  Google Scholar 

  15. Morissette SL, Lewis JA, Clem PG, Cesarano J III, Dimos DB (2001) Direct-write fabrication of Pb(Nb, Zr, Ti)O3 devices: influence of paste rheology on print morphology and component properties. J Am Ceram Soc 84:2462–2468

    Article  CAS  Google Scholar 

  16. Rane SB, Seth T, Phatak GJ, Amalnerkar DP, Das BK (2003) Influence of surfactants treatment on silver powder and its thick films. Mater Lett 57:3096–3100

    Article  CAS  Google Scholar 

  17. Rane SB, Khanna PK, Seth T, Phatak GJ, Amalnerkar DP, Das BK (2003) Firing and processing effects on microstructure of fritted silver thick film electrode materials for solar cells. Mater Chem Phys 82:237–245

    Article  CAS  Google Scholar 

  18. Zürcher S, Graule T (2005) Influence of dispersant structure on the rheological properties of highly-concentrated zirconia dispersions. J Eur Ceram Soc 25:863–873

    Article  Google Scholar 

  19. Lee S, Paik U, Yoon S-M, Choi J-Y (2006) Dispersant-ethyl cellulose binder interactions at the Ni particle-dihydroterpineol interface. J Am Ceram Soc 89:3050–3055

    Article  CAS  Google Scholar 

  20. Shin W, Nishibori M, Ohashi M, Izu N, Itoh T, Matsubara I (2009) Ceramic catalyst combustors of Pt-loaded-alumina on microdevices. J Ceram Soc Jpn 117:659–665

    Article  CAS  Google Scholar 

  21. Phair JW, Lönnroth N, Lundberg M, Kaiser A (2009) Characteristics of cerium-gadolinium oxide (CGO) suspensions as a function of dispersant and powder properties. Colloids Surf A 341:103–109

    Article  CAS  Google Scholar 

  22. Zhang H, Jiang S, Kajiyoshi K (2011) Control of paste rheology and piezoelectric properties of Bi0.5(Na0.82K0.18)0.5TiO3 lead-free piezoelectric thick films deposited by screen printing. Int J Appl Ceram Technol 8:658–668

    Article  CAS  Google Scholar 

  23. Easton RP (1956) U. S. Patent 2,732,305

  24. Tyran LW (1981) U. S. Patent 4,273,583 A

  25. Bertrand F, German S-A, Anwar A, Irune V, Gemma B, Yolanda RDM, Bergström L (2013) Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens. Sci Technol Adv Mater 14:023001

    Article  Google Scholar 

  26. Patel RD, Farrugia VM, Vanbesien D, Zwartz EG (2003) U. S. Patent 6,638,677 B2

  27. Barnes HA (2003) A review of the rheology of filled viscoelastic systems. In: David M B, Walters K (eds) Rheology reviews. British Society of Rheology

  28. Liu D-M (1999) Effect of dispersants on the rheological behavior of zirconia-wax suspensions. J Am Ceram Soc 82:1162–1168

    Article  CAS  Google Scholar 

  29. Lange FF (2001) Shape forming of ceramic powders by manipulating the interparticle pair potential. Chem Eng Sci 56:3011–3020

    Article  CAS  Google Scholar 

  30. Horn RG (1990) Surface forces and their action in ceramic materials. J Am Ceram Soc 73:1117–1135

    Article  CAS  Google Scholar 

  31. French RH (2000) Origins and applications of London dispersion forces and Hamaker constants in ceramics. J Am Ceram Soc 83:2117–2146

    Article  CAS  Google Scholar 

  32. Nam J-G, Lee E-S, Jung W-C, Park Y-J, Sohn B-H, Park S-C, Kim JS, Bae J-Y (2009) Photovoltaic enhancement of dye-sensitized solar cell prepared from [TiO2/ethyl cellulose/terpineol] paste employing triton™ X-based surfactant with carboxylic acid group in the oxyethylene chain end. Mater Chem Phys 116:46–51

    Article  CAS  Google Scholar 

  33. Burnat D, Ried P, Holtappels P, Heel A, Graule T, Kata D (2010) The rheology of stabilised lanthanum strontium cobaltite ferrite nanopowders in organic medium applicable as screen printed SOFC cathode layers. Fuel Cells 10:156–165

    CAS  Google Scholar 

  34. Zhang R, Lin W, K-s M, Wong CP (2010) Fast preparation of printable highly conductive polymer nanocomposites by thermal decomposition of silver carboxylate and sintering of silver nanoparticles. ACS Appl Mater Interfaces 2:2637–2645

    Article  CAS  Google Scholar 

  35. Goodarzi V, Jafari S, Khonakdar H, Seyfi J (2011) Morphology, rheology and dynamic mechanical properties of PP/EVA/clay nanocomposites. J Polym Res 18:1829–1839

    Article  CAS  Google Scholar 

  36. Ghelichi M, Taheri Qazvini N, Jafari S, Khonakdar H, Reuter U (2012) Nanoclay dispersion in a miscible blend: an assessment through rheological analysis. J Polym Res 19:1–9

    Article  CAS  Google Scholar 

  37. Sodeifian G, Nikooamal H, Yousefi A (2012) Molecular dynamics study of epoxy/clay nanocomposites: rheology and molecular confinement. J Polym Res 19:1–12

    Article  CAS  Google Scholar 

  38. Chen Y, Chen Q, Lv Y, Huang Y, Yang Q, Liao X, Niu Y (2015) Rheological behaviors and electrical conductivity of long-chain branched polypropylene/carbon black composites with different methods. J Polym Res 22:1–11

    Article  Google Scholar 

  39. Mewis J, Wagner NJ (2013) Colloidal suspension rheology. Cambridge University Press, New York, p 206

    Google Scholar 

  40. Lane CA, Burton DE, Crabb CC (1984) Accurate molecular dimensions from stearic acid monolayers. J Chem Educ 61:815

    Article  CAS  Google Scholar 

  41. Sperling LH (2006) Introduction to physical polymer science. Wiley, Hoboken, p 113

    Google Scholar 

  42. Ulman A (1996) Formation and structure of self-assembled monolayers. Chem Rev 96:1533–1554

    Article  CAS  Google Scholar 

  43. Lu D, Tong QK, Wong CP (1999) A study of lubricants on silver flakes for microelectronics conductive adhesives. IEEE Trans Compon Packag Technol 22:365–371

    Article  CAS  Google Scholar 

  44. Kohinata S, Terao A, Shiraki Y, Inoue M, Uenishi K (2013) Relationship between the conductivity of isotropic conductive adhesives (ICAs) and the lubricant coated on silver filler particles. Trans Jpn Inst Electron Packag 6:104–108

    Article  CAS  Google Scholar 

  45. Joshi YM (2014) Dynamics of colloidal glasses and gels. Annu Rev Chem Biomol Eng 5:181–202

    Article  CAS  Google Scholar 

  46. Mahamuni S, Bendre BS, Leppert VJ, Smith CA, Cooke D, Risbud SH, Lee HWH (1996) ZnO nanoparticles embedded in polymeric matrices. Nanostruct Mater 7:659–666

    Article  CAS  Google Scholar 

  47. Guo L, Yang S, Yang C, Yu P, Wang J, Ge W, Wong GKL (2000) Highly monodisperse polymer-capped ZnO nanoparticles: preparation and optical properties. Appl Phys Lett 76:2901–2903

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by China Steel Corporation of ROC and in part by the Ministry of Science and Technology of ROC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Chung Hua.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, JS., Liang, JE., Yi, HL. et al. Rheological fingerprints of time-evolving polymer-particle interaction and sol–gel transition in silver pastes. J Polym Res 22, 144 (2015). https://doi.org/10.1007/s10965-015-0790-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0790-7

Keywords

Navigation