Skip to main content

Advertisement

Log in

A high ductility RTM epoxy resin with relatively high modulus and Tg

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

It is hard to obtain a high ductility resin transfer moulding (RTM) epoxy resin while maintaining relatively high modulus and Tg due to the requirement of low viscosity. In the paper, a high breaking elongation (6.1–8.3 %) RTM epoxy system with relatively high modulus (≥3.0 GPa) and Tg (84–115 °C) has been achieved by a novel toughening approach. The simultaneous control of chain segment structural flexibility and crosslink density through the flexible/rigid hardener ratio (D-230/DETDA) and the reaction temperature was proposed for the simultaneous toughening and stiffening of the epoxy resin. Control experiments revealed that epoxy 830 played an important part in the acquirement of high ductility for all these RTM epoxy resin formulas due to the formation of low crosslink density and relatively flexile structure. The fracture surfaces of the epoxy samples examined by scanning electron microscopy (SEM) confirmed the toughening results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lin J, Wu X, Zheng C, Zhang PP, Li QY, Wang W, Yang ZR (2014) J Polym Res 21:435

    Article  Google Scholar 

  2. Juang TY, Liu JK, Chang CC, Shau SM, Tsai MH, Dai SH, Su WC, Lin CH, Jeng RJ (2011) J Polym Res 18:1169–1176

    Article  CAS  Google Scholar 

  3. He YX, Li Q, Kuila T, Kim NH, Jiang TW, Lau KT, Lee JH (2013) Compos Part B-Eng 44:533–539

    Article  CAS  Google Scholar 

  4. Lakshmi MS, Srividhya M, Reddy BSR (2003) J Polym Res 10:259–266

    Article  Google Scholar 

  5. Chen XL, Jiao CM, Li SX, Sun J (2011) J Polym Res 18:2229–2237

    Article  CAS  Google Scholar 

  6. Wong WY, Lin L, McGrail PT, Peijs T, Hogg PJ (2010) Compos Part A-Appl S 41:759–767

    Article  Google Scholar 

  7. Cicala G, Recca G, Carciottto S, Restuccia CL (2009) Polym Eng Sci 49:577–584

    Article  CAS  Google Scholar 

  8. D Manjula D, A Anand P, Heecheul K, Madhvesh P (2014) J Polym Res 21:503

  9. Nograro FF, Llano-Ponte R, Mondragon I (1996) Polymer 37:1589–1600

    Article  Google Scholar 

  10. Abdolreza M, Siamak Z (2011) J Polym Res 18:509–517

    Article  Google Scholar 

  11. Naffakh M, Dumon M, Pupuy J, Gerard JF (2005) J Appl Polym Sci 96:660–672

    Article  CAS  Google Scholar 

  12. Dispenza C, Carter JT, McGrail PT, Spadaro G (2001) Polym Eng Sci 41:1486–1496

    Article  CAS  Google Scholar 

  13. Yan C, Xiao K, Ye L, Mai Y-W (2002) J Mater Sci 37:921–927

    Article  CAS  Google Scholar 

  14. Hong SG, Chan CK, Chuang CC, Keong CW, Hsueh YP (2005) J Polym Res 12:295–303

    Article  CAS  Google Scholar 

  15. Park JS, Park SS, Lee AS (2007) Macromol Symp 249–250:568–572

    Article  Google Scholar 

  16. Di Pasquale G, Motta O, Recca A, Carter JT, McGrail PT, Acierna D (1997) Polymer 38:4345–4348

    Article  Google Scholar 

  17. Van Overbeke E, Devaux J, Legras R, Carter JT, McGrail PT, Carlier V (2003) Polymer 44:4899–4908

    Article  Google Scholar 

  18. Nam GY, Yong GW, Sung CK (2004) Polymer 45:6953–6958

    Article  Google Scholar 

  19. Mujika F, Benito AD, Fernández B, Vázquez A, Llano-Ponte R, Mondragon I (2002) Polym Compos 23:372–382

    Article  CAS  Google Scholar 

  20. Min HS, Kim SC (1999) Polym Bull 42:221–227

    Article  CAS  Google Scholar 

  21. Mimura K, Ito H, Fujikoa H (2000) Polymer 41:4451–4459

    Article  CAS  Google Scholar 

  22. Varley RJ, Hodgkin JH, Simon GP (2001) Polymer 42:3847–3858

    Article  CAS  Google Scholar 

  23. Yang G, Zheng B, Yang JP, Xu GS, Fu SY (2008) J Polym Sci Part A: Polym Chem 46:612–624

    Article  CAS  Google Scholar 

  24. Turmel DJP, Partridge IK (1997) Compos Sci Technol 57:1001–1007

    Article  CAS  Google Scholar 

  25. Bonnaud L, Pascault JP, Sautereau H, Zhao JQ, Jia DM (2004) Polym Compos 25:368–374

    Article  CAS  Google Scholar 

  26. Woo EM, Mao KL (1996) Compos Part A-Appl S 27:625–631

    Article  Google Scholar 

  27. Venderbosch RW, Peijs T, Meijer HEH, Lemstra PL (1996) Compos Part A-Appl S 27:895–905

    Article  Google Scholar 

  28. Saalbrink A, Lorteije A, Peijs T (1998) Compos Part A-Appl S 29:1243–1250

    Article  Google Scholar 

  29. Guo Q, Huang J, Li B, Che T, Zhang H, Feng Z (1991) Polymer 32:58–65

    Article  CAS  Google Scholar 

  30. Francis B, Poel GV, Posada F, Croenincks G, Rao VL, Ramaswamy R, Thomas S (2003) Polymer 44:3687–3699

    Article  CAS  Google Scholar 

  31. Woo EM, Mao KL (1996) Polym Compos 17:799–805

    Article  CAS  Google Scholar 

  32. Kim J, Robertson RE (1992) Adv Chem Ser 233:427

    Article  Google Scholar 

  33. Brian S, Hayes JCS (2001) Polym Compos 22:451–467

    Article  Google Scholar 

  34. Roy PK, Iqbal N, Kumar D, Rajagopal C (2014) J Polym Res 21:348

    Article  Google Scholar 

  35. Parveen G, Bhanu PS, Gaurav K, Tejendra G, Indresh P, Seth RK, Tandon RP, Rakesh BM (2011) J Polym Res 18:1397–1407

    Article  Google Scholar 

  36. Kinloch A, Masania K, Taylor A, Sprenger S, Egan D (2008) J Mater Sci 43:1151–1154

    Article  CAS  Google Scholar 

  37. Rostamiyan Y, Fereidoon AB, Mashhadzadeh H, Khalili MA (2013) J Polym Res 20:135

    Article  Google Scholar 

  38. Sohel R, Amitava B, Shama P, Raul F, Ramasamy A, Mangla J (2013) J Polym Res 20:314

    Article  Google Scholar 

  39. Kim BC, Park SW, Lee DG (2008) Compos Struct 86:69–77

    Article  Google Scholar 

  40. Mirmohseni A, Zavareh S (2010) J Polym Res 17:191–201

    Article  CAS  Google Scholar 

  41. Chozhan CK, Alagar M, Sharmila RJ, Gnanasundaram P (2007) J Polym Res 14:319–328

    Article  CAS  Google Scholar 

  42. Hojo M, Matsuda S, Tanaka M, Ochiai S, Murakami A (2006) Compos Sci Technol 66:665–675

    Article  CAS  Google Scholar 

  43. Lu WH, Liao FS, Su AC, Kao PW, Hsu TJ (1995) Composites 26:215–222

    Article  CAS  Google Scholar 

  44. Sela N, Ishai O (1989) Composites 20:257–264

    Article  CAS  Google Scholar 

  45. Yang JP, Chen ZK, Yang G, Fu SY, Ye L (2008) Polymer 49:3168–3175

    Article  CAS  Google Scholar 

  46. Liao B, Li HY, Wang K, Li RJ, Song H (2010) CN 101880443A

  47. Wang BC, Zhou X, Ma KM (2013) Compos Part B-Eng 46:123–129

    Article  CAS  Google Scholar 

  48. Sprenger SJ (2014) Mater Sci 49:2391–2402

    Article  CAS  Google Scholar 

  49. Chen P, Liu SP, Wang DZ (2011) Chemical Industry Press. Beijing, PP. 42–51

  50. Naffakh M, Dumon M, Gerard JF (2006) J Appl Polym Sci 102:4228–4237

    Article  CAS  Google Scholar 

  51. Kruckenberg T, Paton R (2009) Aviation Industry Press. Beijing, PP. 29–30

  52. Phillips DC, Scott JM, Jones M (1978) J Mater Sci 13:311–322

    Article  CAS  Google Scholar 

  53. Plangsangmas L, Mecholsky JJ, Anthony JR (1999) J Appl Polym Sci 72:257–268

    Article  CAS  Google Scholar 

  54. Li GY, Li ZD, Ji L, Liu G (2007) Chemical Industry Press. Beijing, PP. 26–29

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao-Gang Sun.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 225 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, HQ., Sun, BG., Liu, Q. et al. A high ductility RTM epoxy resin with relatively high modulus and Tg. J Polym Res 22, 134 (2015). https://doi.org/10.1007/s10965-015-0774-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0774-7

Keywords

Navigation