Skip to main content
Log in

Dynamics of Poly (butyl acrylate) and Poly (ethyl acrylate) with internal double bonds

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this paper, the changes in dynamics of Poly (butyl acrylate) (PBA) and Poly (ethyl acrylate) (PEA) after introducing internal double bonds (through copolymerizing with isoprene (IP)) were studied through sight of fragility theory. The dynamic fragility was determined. And the result shows that dynamic fragility indexes of PBA-co-IP and PEA-co-IP are smaller than PBA and PEA. Furthermore, the scaled dynamic mechanical spectra show that PBA-co-IP and PEA-co-IP have longer length of glass–rubber transition region. In one side, our work is well fitted to the universal theory that smaller fragility leads to longer soft dispersing in glass–rubber transition region. In the other side, adding internal double bonds is an effective way to weak fragility of polymers, which results in a broader transition region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Anderson PW (1995) Through the glass lightly. Science 267:1609–1618

    Article  Google Scholar 

  2. Angell CA (1985) Spectroscopy simulation and scattering, and the medium range order problem in glass. J Non-Cryst Solids 73:1–17

    Article  CAS  Google Scholar 

  3. Chen K, Saltzman EJ, Schweizer KS (2009) Segmental dynamics in polymers: from cold melts to ageing and stressed glasses. J Phys Condens Matter 21:503101

    Article  CAS  Google Scholar 

  4. Novikov VN (1998) Vibration anharmonicity and fast relaxation in the region of the glass transition. Phys Rev B 58:8367–8378

    Article  CAS  Google Scholar 

  5. Novikov VN, Ding Y, Sokolov AP (2005) Correlation of fragility of supercooled liquids with elastic properties of glasses. Phys Rev E 71:1501

    Article  Google Scholar 

  6. Gotze W, Sjogren L (1992) Relaxation processes in supercooled liquids. Rep Prog Phys 55:241

    Article  Google Scholar 

  7. Fitzgerald ER, Grandine LD, Ferry JD (1953) Dynamic mechanical properties of polyisobutylene. J Appl Phys 24:650–655

    Article  CAS  Google Scholar 

  8. Boyer RF (1966) The high temperature (T>Tg) amorphous transition in atactic polystyrene. J Polym Sci C 14:267–281

    Article  Google Scholar 

  9. Boyer RF, Miller RL (1984) Correlation of liquid-state compressibility and bulk modulus with cross-sectional area per polymer chain. Macromolecules 17:365–369

    Article  CAS  Google Scholar 

  10. Ngai KL (2011) Relaxation and diffusion in complex systems. Springer, New York

    Book  Google Scholar 

  11. Wang XA, Huang GS, Wu JR, Nie YJ, He XJ, Xiang KW (2011) Molecular motions in glass–rubber transition region in polyisobutylene investigated by two-dimensional correlation dielectric relaxation spectroscopy. Appl Phys Lett 99:121902

    Article  Google Scholar 

  12. Wang XA, Huang GS, Wu JR, Nie YJ, He XJ (2011) Using two-dimensional correlation dynamic mechanical spectroscopy to detect different modes of molecular motions in the glass–rubber transition region in polyisobutylene. J Phys Chem B 115:1775–1779

    Article  CAS  Google Scholar 

  13. Wu XB, Liu CS, Zhu ZG, Ngai KL, Wang LM (2011) Nature of the sub-rouse modes in the glass rubber transition zone of amorphous polymers. Macromolecules 44:3605–3610

    Article  CAS  Google Scholar 

  14. Wu XB, Wang HG, Liu CS, Zhu ZG (2011) Longer-scale segmental dynamics of amorphous poly(ethylene oxide)/poly(vinyl acetate) blends in the softening dispersion. Soft Matter 7:579–586

    Article  CAS  Google Scholar 

  15. Wu XB, Zhu ZG (2009) Dynamic crossover of α′ relaxation in poly(vinyl acetate) above glass transition via mechanical spectroscopy. J Phys Chem B 113:11147–11152

    Article  CAS  Google Scholar 

  16. Shang SY, Wu XB, Zhu ZG (2007) Energy dissipation study of atactic polystyrene melts above Tg. Physica B 396:160–163

    Article  CAS  Google Scholar 

  17. Wu XB, Zhou XM, Liu CS, Zhu ZG (2009) Slow dynamics of the α and α′ relaxation processes in poly(methyl-methacrylate) through the glass transition studied by mechanical spectroscopy. J Appl Phys 106:013527

    Article  Google Scholar 

  18. Wang XA, Nie YJ, Huang GS, Wu JR, Xiang KW (2012) Dynamic crossover of the sub-rouse modes in the glass–rubber transition region in poly(n-alkyl methacrylates) with different side chain lengths. Chem Phys Lett 538:82–85

    Article  CAS  Google Scholar 

  19. He XR, Huang GS, Zhou H, Jiang LX, Zhao XD (2005) Investigation on the damping behavior of CIIR/PMAc blends. Acta Polym Sin 1:108–112

    Google Scholar 

  20. Huang GS, He XR, Wu JR, Pan QY (2006) Effect of miscibility and forced compatibility on damping properties of CIIR/PAc blend. J Appl Polym Sci 102:3127–3133

    Article  CAS  Google Scholar 

  21. Wang XA, He XJ, Huang GS, Wu JR (2012) Correlations between alkyl side chain length and dynamic mechanical properties of poly(n-alkyl acrylates) and poly(n-alkyl methacrylates). Polymer 53:665–672

    Article  CAS  Google Scholar 

  22. He XJ, Wu JR, Huang GS, Wang XA (2010) Effect of alkyl side chain length on relaxation behaviors in poly(nalkyl acrylates) and poly(n-alkyl methacrylates). J Macromol Sci B Phys 50:188–200

    Article  Google Scholar 

  23. Plazek DJ, Chay IC, Ngai KL, Roland CM (1995) Viscoelastic properties of polymers. 4. Thermorheological complexity of the softening dispersion in polyisobutylene. Macromolecules 28:6432–6436

    Article  CAS  Google Scholar 

  24. Ngai KL, Capaccioli S (2013) Unified explanation of the anomalous dynamic properties of highly asymmetric polymer blends. J Chem Phys 138:054903

    Article  CAS  Google Scholar 

  25. Kisliuk A, Mathers RT, Sokolov AP (2000) Crossover in dynamics of polymeric liquids: back to Tll? J Polym Sci B Polym Phys 38:2785–2790

    Article  CAS  Google Scholar 

  26. Rossler E, Sokolov AP (1996) The dynamics of strong and fragile glass formers. Chem Geol 128:143–153

    Article  Google Scholar 

  27. Dudowicz J, Freed KF, Douglas JF (2005) The glass transition temperature of polymer melts. J Phys Chem B 109:21285–21292

    Article  CAS  Google Scholar 

  28. Saltzman EJ, Schweizer KS (1984) Theory of dynamic barriers, activated hopping, and the glass transition in polymer melts. J Chem Phys 2004:121

    Google Scholar 

  29. Saltzman EJ, Schweizer KS (2007) Short time properties, dynamic fragility and pressure effects in deeply supercooled polymer melts. J Phys Condens Matter 19:205123

    Article  Google Scholar 

  30. Wu JR, Huang GS, Qu LL, Zheng J (2009) Correlations between dynamic fragility and dynamic mechanical properties of several amorphous polymers. J Non-Cryst Solids 355:1755–1759

    Article  CAS  Google Scholar 

  31. Ngai KL, Plazek DJ (1995) Identification of different modes of molecular motion in polymers that cause thermorheological complexity. Rubber Chem Technol 68:376–434

    Article  CAS  Google Scholar 

  32. Reissig S, Beiner M, Vieweg S, Schroter K, Donth E (1996) Fine structure of the glass transition in amorphous polymers: slight shoulder in the shear H spectrum at the L peak. Macromolecules 29:3996–3999

    Article  CAS  Google Scholar 

  33. Donth E, Beiner M, Reissig S, Korus J, Garwe F, Vieweg S, Kahle S, Hempel E, Schroter K (1996) Fine structure of the main transition in amorphous polymers: entanglement spacing and characteristic length of the glass transition. Discussion of examples. Macromolecules 29:6589–6600

    Article  CAS  Google Scholar 

  34. Robertson CG, Rademacher CM (2004) Coupling model interpretation of thermorheological complexity in polybutadienes with varied microstructure. Macromolecules 37:10009–10017

    Article  CAS  Google Scholar 

  35. Ngai KL, Plazek DJ (2002) Resolution of sub-rouse modes of polystyrene by dissolution. Macromolecules 35:9136–9141

    Article  CAS  Google Scholar 

  36. Wu JR, Huang GS, Wang XA, He XJ, Xu B (2012) Changes in the viscoelastic mechanisms of polyisobutylene by plasticization. Macromolecules 45:8051–8057

    Article  CAS  Google Scholar 

  37. Wu JR, Huang GS, Wang XA, He XJ, Lei HX (2011) Molecular dynamics in chlorinated butyl rubber containing organophilic montmorillonite nanoparticles. J Polym Res 18:2213–2220

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianru He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, R., He, X. & Huang, G. Dynamics of Poly (butyl acrylate) and Poly (ethyl acrylate) with internal double bonds. J Polym Res 21, 388 (2014). https://doi.org/10.1007/s10965-014-0388-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-014-0388-5

Keywords

Navigation