Skip to main content
Log in

Effect of crosslinker structure and crosslinker/monomer ratio on network parameters and thermodynamic properties of Poly (N-isopropylacrylamide) hydrogels

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The effect of polymer composition and polymerization parameters such as the type of crosslinker and comonomer, crosslinker/monomer ratio and polymerization temperature on the polymer-solvent interactions and mechanical properties of tetraallylammonium bromide (TAB)-crosslinked N-isopropylacrylamide (NIPAAm), N,N’-methylenebisacrylamide (BIS)-crosslinked NIPAAm and TAB-crosslinked NIPAAm - itaconic acid (IA) hydrogels were studied. It was observed that the hydrogels prepared by 0.7 mole / L concentration of NIPAAm and crosslinked with BIS exhibited mechanical weakness and, they were broken even under a pressure, being less than 5.0 N at a swelling temperature of 25 °C while the PNIPAAm hydrogels crosslinked with ionic-octafunctional crosslinker, TAB, had better compression properties. A decrease in the concentration of NIPAAm, increasing TAB content, addition of a hydrophilic/weakly acidic comonomer, IA and an increase in the functionality of crosslinker resulted in the decreasing values of the poymer-solvent interaction parameter, χ at 25 °C. The values of χ , effective crosslinking density (νe) and enthalpy changes during the shrinkage process in the ranges of 33o - 45 °C and 37o- 45 °C indicated the exothermal nature of phase transition and the importance of intermolecular interactions between PNIPAAm chains. The partial molar dilution-enthalpies (ΔH1) and -entropies (ΔS1) that were calculated from the values of enthalpic and entropic components of χ also indicated a similar trend, referring to a decrease in ordered-structuring of water molecules around hydrophobic isopropyl groups with an increase in the swelling temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Tanaka T (1979) Phase transitions in gels and a single polymer. Polymer 20:1404–1412

    Article  CAS  Google Scholar 

  2. Schild HG (1992) Poly (N-isopropylacrylamide): experiment, theory and applications. Progress Polym Sci 17:163–249

    Article  CAS  Google Scholar 

  3. Taylor LD, Cerankowski LD (1975) Preparation of films exhibiting a balanced temperature dependence to permeation by aqueous solutions-a study of lower consolute behavior. J Polym Sci Polym Chem Ed 13(11):255–2570

    Article  Google Scholar 

  4. Boutris C, Chatzi EG, Kiparissides C (1997) Characterization of the LCST behaviour of aqueous poly(N-isopropylacrylamide) solutions by thermal and cloud point techniques. Polymer 38:2567–2570

    Article  CAS  Google Scholar 

  5. Costa ROR, Freitas RFS (2002) Phase behavior of poly(N-isopropylacrylamide) in binary aqueous solutions. Polymer 43:5879–5885

    Article  CAS  Google Scholar 

  6. Aguliar MR, Elvira C, Gallardo A, Vazquez B, Roman JS (2007) “Topics in Tissue Engineering” Vol. 3. Eds. Ashammakhi N, Reis R, Chiellini E

  7. Bae YH, Okano T, Kim SW (1990) Temperature dependence of swelling of crosslinked poly(N, N’-alkyl sustituted acrylamides) in water. J Polym Sci Polym Phys 28:923–936

    Article  CAS  Google Scholar 

  8. Hsiue G-H, Hsu S-H, Yang C-C, Lee S-H, Yang I-K (2002) Preparation of controlled release ophtalmic drops for glucoma theraphy using thermosensitive poly-N-isopropylacrylamide. Biomaterials 23:457–462

    Article  CAS  Google Scholar 

  9. Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to biotechnology. Adv Mater 18:1345–1360

    Article  CAS  Google Scholar 

  10. Klouda L, Mikos AG (2008) Thermoresponsive hydrogels in biomedical applications- a review. Eur J Pharm Biopharm 68(1):38–45

    Google Scholar 

  11. Silva RMP, Mano JF, Reis RL (2007) Smart thermoresponsive coatings and surfaces for tissue engineering: switching cell-material boundaries. Trends Biotechnol 25(12):577–583

    Article  Google Scholar 

  12. Atta AM, Abdel-Azim A, El-Zomor A (1998) Effect of crosslinker functionality on swelling and network parameters of copolymeric hydrogels. Polym Adv Technol 9:340–348

    Article  CAS  Google Scholar 

  13. Oh JS, Kim JM, Lee K-J, Bae YC (1999) Swelling behaviour of N-isopropylacrylamide gel particles with degradable crosslinker. Eur Polym J 35:621–630

    Article  CAS  Google Scholar 

  14. Xue W, Champ S, Huglin MB (2001) Network and swelling parameters of chemically crosslinked thermoreversible hydrogels. Polymer 42:3665–3669

    Article  CAS  Google Scholar 

  15. Yıldız Y, Uyanık N, Erbil C (2006) Compressive elastic moduli of poly(N-isopropylacrylamide) hydrogels crosslinked with poly(dimethyl siloxane). J Macromol Sci A Pure Appl Chem 43:1091–1106

    Article  Google Scholar 

  16. Turan E, Demirci S, Çaykara T (2008) Thermo- and pH-induced phase transitions and network parameters of poly(N-isopropylacrylamide-co-2-acrylamido-2-methyl-propanosulfonic acid) hydrogels. J Polym Sci B Polym Phys 46:1713–1724

    Article  CAS  Google Scholar 

  17. Marek SR, Conn CA, Peppas NA (2010) Cationic nanogels on diethylaminoethyl methacrylate. Polymer 51(6):1237–1243

    Article  CAS  Google Scholar 

  18. Santos JR, Alves NM, Mano JF (2010) “New thermo-responsive hydrogels based on poly (N-isopropylacrylamide) / hyaluronic acid semi-interpenetrated polymer networks: Swelling properties and drug release studies” 25 169–184

  19. Peppas NA, Khare AR (1993) Preparation, structure and diffusional behavior of hydrogels in controlled release. Adv Drug Deliv Rev 11:1–35

    Article  CAS  Google Scholar 

  20. Erbil C, Aras S, Uyanik N (1999) Investigation of the effect of type and concentration of ıonizable comonomer on the collapse behavior of N-isopropylacrylamide copolymer gels in water. J Polym Sci A Polym Chem 37:1847–1855

    Article  CAS  Google Scholar 

  21. Quintana JR, Valderruten NE, Katime I (2002) Mechanical properties of poly(N-isopropylacrylamideco-itaconic acid) hydrogels. J Appl Polym Sci 85:2540–2545

    Article  CAS  Google Scholar 

  22. Taşdelen B, Kayaman-Apohan N, Güven O, Baysal BM (2004) Preparation of poly(N-isopropylacrylamide/itaconic acid) copolymeric hydrogels and their drug release behavior. Int J Pharm 278:343–351

    Article  Google Scholar 

  23. Wandrey C, Hernandez-Barajas J, Hunkeler D (1999) Diallyldimethylammonium chloride and its polymers. Adv Polym Sci 145:123–182

    Article  CAS  Google Scholar 

  24. Wei J, Xu S, Wu R, Wang J, Gao Y (2007) Synthesis and characteristics of an amphoteric semi-IPN hydrogel composed of acrylic acid and poly(diallyldimethylammonium chloride). J Appl Polym Sci 103:345–350

    Article  CAS  Google Scholar 

  25. Gao D-G, Ma J-Z, Guo H-Q (2010) Synthesis of pH-responsive hydrophobically modified hydrogels of poly(methacrylic acid-co-diallylammonium salt) in aqueous solution. New J Chem 34:2034–2039

    Article  CAS  Google Scholar 

  26. Kalinov K, Ignatova M, Maximova V, Rashkov I, Manolova N (2014) Modification of electrospun poly(ε-caprolactone) mats by formation of a polyelectrolyte complex between poly(acrylic acid) and quaternized chitosan for tuning of their antibacterial properties. Eur Polym J 50:18–29

    Article  CAS  Google Scholar 

  27. Andrews MA, Figuly GD, Chapman JS, Hunt TW, Glunt CD, Rivenbark JA, Chenault HK (2011) Antimicrobial hydrogels formed by crosslinking polyallylamine with aldaric acid derivatives. J Appl Polym Sci 119:3244–3252

    Article  CAS  Google Scholar 

  28. Senkal BF, Erkal D, Yavuz E (2006) Removal of dyes from water by poly(vinyl pyrolidone hydrogel. Polym Adv Technol 17:924–927

    Article  CAS  Google Scholar 

  29. Ilavsky M (1982) Phase transition in swollen gels. 2. Effect of charge concentration on the collapse and mechanical behavior of polyacrylamide networks. Macromolecules 15:782–788

    Article  CAS  Google Scholar 

  30. Ilavsky M, Sedláková Z, Bouchal K, Plestil J (1996) Phase transition in swollen gels. 21. Effect of acrylamide quaternary salts with various alkyl lengths on the collapse, mechanical, and SAXS behavior of poly(acrylamide) networks. Macromolecules 28:6835–6842

    Article  Google Scholar 

  31. Stammen JA, Williams S, Ku DN, Guldberg RE (2001) Mechanical properties of a novel PVA hydrogel in shear and unconfined compression. Biomaterials 22:799–806

    Article  CAS  Google Scholar 

  32. Li X, Wu W, Wang J, Duan Y (2006) The swelling behavior and network parameters of guar gum/poly(acrylic acid) semi-interpenetrating polymer network hydrogels. Carbohydr Polym 66:473–479

    Article  CAS  Google Scholar 

  33. Goycoolea FM, Argüelles-Monal WM, Lizardi J, Peniche C, Heras A, Galed G, Díaz EI (2007) Temperature and pH-sensitive chitosan hydrogels: DSC, rheological and swelling evidence of a volume phase transition. Polym Bull 58:225–234

    Article  CAS  Google Scholar 

  34. Muniz C, Geuskens G (2001) Compressive elastic modulus of polyacrylamide hydrogels and semi-IPNs with poly(N-isopropylacrylamide). Macromolecules 34:4480–4484

    Article  CAS  Google Scholar 

  35. Flory PJ (1953) Principles of polymer chemistry. Cornell University, Ithaca

    Google Scholar 

  36. Sen M, Guven O (1998) Prediction of swelling behaviour of hydrogels containing diprotic acid mioeties. Polymer 39(5):1165–1172

    Article  CAS  Google Scholar 

  37. Huglin MB, Rehab MMAM, Zakaria MB (1986) Thermodynamic interactions in copolymeric hydrogels. Macromolecules 19:2986–2991

    Article  CAS  Google Scholar 

  38. Yeh F, Sokolov EL, Walter T, Chu B (1998) Structure studies of poly(diallyldimethylammonium chloride-co-acrylamide) gels/ sodium dodecyl sulfate complex. Langmuir 14:4350–4358

    Article  CAS  Google Scholar 

  39. Hirokawa Y, Tanaka T, Matsuo ES (1984) Volume phase transition in a nonionic gel. J Chem Phys 81:6379–6380

    Article  Google Scholar 

  40. Hirotsu S, Hirokawa Y, Tanaka T (1987) Volume–phase transitions of ionized N–isopropylacrylamide gels. J Chem Phys 87:1392

    Article  CAS  Google Scholar 

  41. Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46

    Article  CAS  Google Scholar 

  42. Hamcerencu M, Desbrieres J, Khoukh A, Popa M, Riess G (2011) Thermodynamic investigation of thermoresponsive xanthan-poly(N-isopropylacrylamide) hydrogels. Polym Int 60:1527–1534

    Article  CAS  Google Scholar 

  43. Zhang X, Wu D, Chu CC (2004) Synthesis and characterization of partially biodegradable, temperature and pH sensitive Dex-MA/PNIPAAm hydrogels. Biomaterials 25:4719–4730

    Article  CAS  Google Scholar 

  44. Cho EC, Lee J, Cho K (2003) Role of bound water and hydrophobic ınteraction in phase transition. Macromolecules 36:9929–9934

    Article  CAS  Google Scholar 

  45. Grinberg VY, Dubovik AS, Kuznetsov DV, Grinberg NV, Grosberg AY, Tanaka T (2000) Studies of the thermal volume transition of poly(N-isopropylacrylamide) hydrogels by high-sensitivity differential scanning microcalorimetry. 2. Thermodynamic functions. Macromolecules 33:8685

    Article  CAS  Google Scholar 

  46. Nonaka T, Hua L, Ogata T, Kurihara S (2003) Synthesis of watersoluble thermosensitive polymers having phosphonium groups from methacryloyloxyethyl trialkyl phosphonium chlorides-nisopropylacrylamide copolymers and their functions. J Appl Polym Sci 87:386–393

    Article  CAS  Google Scholar 

  47. Chang H-I, Yang M-S, Liang M (2010) The synthesis, characterization and antibacterial activity of quaternized poly(2,6-dimethyl-1,4-phenylene oxide)s modified with ammonium and phosphonium salts. React Funct Polym 70:944–950

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Candan Erbil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gökçeören, A.T., Şenkal, B.F. & Erbil, C. Effect of crosslinker structure and crosslinker/monomer ratio on network parameters and thermodynamic properties of Poly (N-isopropylacrylamide) hydrogels. J Polym Res 21, 370 (2014). https://doi.org/10.1007/s10965-014-0370-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-014-0370-2

Keywords

Navigation