Skip to main content
Log in

Modification of tannin based rigid foams using oligomers of a hyperbranched poly(amine-ester)

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Tannin-based rigid foam is an excellent alternative for other commercial foams due to price advantage, excellent fire resistance and low thermal conductivity. However, expanding its usability is restricted by its corresponding inferior mechanical properties. In the current work, we proposed a novel modification method which markedly improved its mechanical properties with respect to other approaches. The novel modification depends on boosting the foam network structure by adding oligomeric precursors (hydroxyl-terminated) of a hyperbranched poly(amine-ester) together with glutaraldehyde (crosslinker) as parts of the formulation where it was found that the compressive strength elevated remarkably and reached maximum of 37 % with respect to conventional formulation in absence of these additives or in presence of either of these additives alone. The novel modification method may show promise to obtain such materials for lower price under optimized conditions with respect to other reported modifiers due to the huge functionality of a hyperbranched polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Fig. 7
Scheme 3

Similar content being viewed by others

References

  1. Frechet JMJ (1994) Science 263:1710–1715

    Article  CAS  Google Scholar 

  2. Newkome GR, Moorefield CN, Vogtle F (1996) Dendritic molecules—concepts, syntheses, perspective. Wiley, Weinheim

    Google Scholar 

  3. Gao C, Yan DY (2004) Prog Polym Sci 29:183–175

    Article  CAS  Google Scholar 

  4. Uhrich KE (1997) Trends Polym Sci 5:388–393

    CAS  Google Scholar 

  5. Voit B (2000) J Polym Sci Part A: Polym Chem 38:2505–2525

    Article  CAS  Google Scholar 

  6. Qiu T, Tang L, Fu Z, Tuo X, Li Y, Liu D, Wang W (2004) Polym Adv Techn 15:65–69

    Article  CAS  Google Scholar 

  7. Kim YH, Beckerbauer R (1994) Macromolecules 27:1968–1971

    Article  CAS  Google Scholar 

  8. Hult A, Johansson M, Malmstrom E (1995) Macromol Symp 98:1159–1161

    Article  CAS  Google Scholar 

  9. Tomalia DA, Naylor AM, Goddand WA (1990) Angew Chem Int Ed Engl 29:138–175

    Article  Google Scholar 

  10. Jannerfeldt G, Boogh L, Manson JAE (2000) Polymer 41:7627–7634

    Article  CAS  Google Scholar 

  11. Hong Y, Coombs SJ, Cooper-White JJ, Mackay ME, Hawker CJ, Malmstrom E, Rehnberg N (2000) Polymer 41:7705–7713

    Article  CAS  Google Scholar 

  12. Gao F, Schricker SR, Tong Y, Culbertson BM (2002) J Macromol Sci Pure Appl Chem 39:267–286

    Article  Google Scholar 

  13. Pasch H, Pizzi A, Rode K (2001) Polymer 42:7531–7539

    Article  CAS  Google Scholar 

  14. Meikleham N, Pizzi A (1994) J Appl Polym Sci 53:1547–1556

    Article  CAS  Google Scholar 

  15. Tondi G, Pizzi A, Masson E, Celzard A (2008) Polym Degr Stab 93:1539–1543

    Article  CAS  Google Scholar 

  16. Zhao W, Fierro V, Pizzi A, Du G, Celzard A (2010) Mater Chem Phys 123:210–217

    Article  CAS  Google Scholar 

  17. Li X, Basso MC, Braghiroli F, Fierro V, Pizzi A, Celzard A (2012) Carbon 50:2026–2036

    Article  CAS  Google Scholar 

  18. Kim A, Hasan MA, Nahm SH, Cho SS (2005) Compos Struct 71:191–198

    Article  Google Scholar 

  19. Chen C, Kennel E, Stiller A, Stansberry P, Zondlo JW (2006) Carbon 44:1535–1543

    Article  CAS  Google Scholar 

  20. Abdalla MO, Ludwick A, Mitchell T (2003) Polymer 44:7353–7359

    Article  CAS  Google Scholar 

  21. Ligoure C, Cloitre M, Le Chatelier C, Monti F, Leibler L (2005) Polymer 46:6402–6410

    Article  CAS  Google Scholar 

  22. Checchin M, Cecchini C, Cellarosi B, Sam FO (1999) Polym Degrad Stabil 64:573–576

    Article  CAS  Google Scholar 

  23. Wright P, Cumming APC (1969) Solid Polyurethane Elastomers. Maclaren and Sons, London

    Google Scholar 

  24. Tondi G, Zhao W, Pizzi A, Du G, Fierro V, Celzard A (2009) Bioresource Technol 100:5162–5169

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to X. Li or A. Pizzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Essawy, H.A., Pizzi, A. et al. Modification of tannin based rigid foams using oligomers of a hyperbranched poly(amine-ester). J Polym Res 19, 21 (2012). https://doi.org/10.1007/s10965-012-0021-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-0021-4

Keywords

Navigation