Skip to main content
Log in

Melt-spinning and thermal stability behavior of TiO2 nanoparticle/polypropylene nanocomposite fibers

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The elongational flow properties of TiO2 nanoparticle/polypropylene (PP) nanocomposite fibers were studied via melt spinning. The diameter, tension, and flow rate of fibers were directly measured and used to calculate the apparent elongational viscosity and apparent elongational strain rate using Cogswell’s theory. Thermal gravimetric analysis (TGA) was used to demonstrate that the TiO2 nanoparticles improved the thermal stability of the PP fibers. With a 1–3 wt % loading of the TiO2 nanoparticles, the PP fiber decomposition temperatures ranged from 338 °C for the pristine polymer to 342, 349, and 367 °C; the decomposition was accompamied by an initial 95 wt % weight loss. In addition, the well-distributed morphology of the TiO2 nanoparticles on the side surface of the PP matrix was observed using atomic force microscopy (AFM). At 1 wt % loading of the TiO2 nanoparticles, the surfaces of the PP nanofibers contained mono-disperse nanoparticles with sizes of 20–50 nm. Furthermore, the TiO2 nanoparticle/PP nanocomposite fibers were shown to be thermally stable and are suitable for application as an antibacterial polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pavlidoua S, Papaspyrides CD (2008) Prog Polym Sci 33:1119–1198. doi:10.1016/j.progpolymsci.2008.07.008

    Article  Google Scholar 

  2. Kubacka A, Serrano C, Ferrer M, Lunsdorf H, Bielecki P, Cerrada ML, Fernandez-Garcia M (2007) Nano Lett 7:2529–2534. doi:10.1021/nl0709569

    Article  CAS  Google Scholar 

  3. Kagan CR, Mitzi DB, Dimitrakopoulos CD (1999) Science 286:945–947. doi:10.1126/science.286.5441.945

    Article  CAS  Google Scholar 

  4. Eckle M, Decher G (2001) Nano Lett 1:45–49. doi:10.1021/nl005514a

    Article  CAS  Google Scholar 

  5. Choy JH, Kwak SY, Jeong YJ, Park JS (2000) Angew Chem Int Ed 39:4041–4045. doi:10.1002/1521-3773(20001117)39:22<4041::AID-ANIE4041>3.0.CO;2-C

    Google Scholar 

  6. Cristofaro AD, Violante A (2001) Appl Clay Sci 19:59–67. doi:10.1016/S0169-1317(01)00047-3

    Article  Google Scholar 

  7. Chopra KL (1969) Thin film phenomena. McGraw-Hill, New York

    Google Scholar 

  8. Hsu YG, Lin KH (2001) J Polym Res 8:69–76. doi:10.1007/s10965-006-0136-6

    Article  CAS  Google Scholar 

  9. Jakob M, Levanon H, Kamat PV (2003) Nano Lett 3:353–358. doi:10.1021/nl0340071

    Article  CAS  Google Scholar 

  10. Shi SL, Zhang LZ, Li JS (2009) J Polym Res 16:395–399. doi:10.1007/s10965-008-9241-z

    Article  CAS  Google Scholar 

  11. Chiu FC, Chu PH (2006) J Polym Res 13:73–78. doi:10.1007/s10965-005-9009-7

    Article  CAS  Google Scholar 

  12. Linsebigler AL, Lu G, Yates JT Jr (1995) Chem Rev 95:735–758. doi:10.1021/cr00035a013

    Article  CAS  Google Scholar 

  13. Karger-Kocsis J (1999) Polypropylene an a-z reference. Kluwer Academic, London

    Google Scholar 

  14. Kotek J, Kelnar I, Studenovsky M, Baldrian J (2005) Polymer 46:4876–4881. doi:10.1016/j.polymer.2005.02.119

    CAS  Google Scholar 

  15. Schimanski T, Peijs T, Lemstra PJ, Loos J (2004) Macromolecules 37:1810–1815. doi:10.1021/ma034949s

    Article  CAS  Google Scholar 

  16. Thio YS, Argon AS, Cohen RE (2004) Polymer 45:3139–3147. doi:10.1016/j.polymer.2004.02.064

    Article  CAS  Google Scholar 

  17. Greener J, Evans JRG (1997) J Eur Ceram Soc 17:1173–1183. doi:10.1016/S0955-2219(96)00227-0

    Article  CAS  Google Scholar 

  18. Koizumi T, Usui S (1999) J Appl Polym Sci 71:2381–2384. doi:10.1002/(SICI)1097-4628(19990404)71:14<2381::AID-APP9>3.0.CO;2-6

    Article  CAS  Google Scholar 

  19. Cogswell FN (1969) Rheol Acta 8:187–194. doi:10.1007/BF01984657

    Article  CAS  Google Scholar 

  20. Cogswell FN (1972) Polym Eng Sci 12:64–73. doi:10.1002/pen.760120111

    Article  CAS  Google Scholar 

  21. Ku TH, Lin CA (2005) J Polym Res 12:23–29. doi:10.1007/s10965-004-0985-9

    Article  CAS  Google Scholar 

  22. Yeo SY, Jeong SH (2003) Polym Internat 52:1053–1057. doi:10.1002/pi.1215

    Article  CAS  Google Scholar 

  23. Wunderlich B (1990) Thermal Analysis. Academic Press, New York, p 418

    Google Scholar 

  24. Tang J, Redl F, Zhu Y, Siegrist T, Brus LE, Steigerwald ML (2005) Nano Lett 5:543–548. doi:10.1021/nl047992h

    Article  CAS  Google Scholar 

  25. Kumar AP, Depan D, Tomer NS, Singh RP (2009) Prog Polym Sci 34:479–515. doi:10.1016/j.progpolymsci.2009.01.002

    Article  CAS  Google Scholar 

  26. Alexandre M, Dubois P (2000) Mater Sci Eng 28:1–63. doi:10.1016/S0927-796X(00)00012-7

    Article  Google Scholar 

  27. Ray SS, Okamoto M (2003) Prog Polym Sci 28:1539–1641. doi:10.1016/j.progpolymsci.2003.08.002

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We acknowledge financial support from the Ministry of Economic Affairs and the National Science Council (NSC) of Taiwan. We thank Professor Jiang-Jen Lin at National Taiwan University for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chin-An Lin or Po-Da Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiu, CW., Lin, CA. & Hong, PD. Melt-spinning and thermal stability behavior of TiO2 nanoparticle/polypropylene nanocomposite fibers. J Polym Res 18, 367–372 (2011). https://doi.org/10.1007/s10965-010-9426-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-010-9426-0

Keywords

Navigation