Skip to main content
Log in

On Approximation of Coefficient Inverse Problems for Differential Equations in Functional Spaces

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

This paper is devoted to the theory of approximation of coefficient inverse problems for differential equations of parabolic, elliptic, and hyperbolic types in functional spaces. We present general statements of problems and their approximations and review results obtained earlier in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. R. Aida-zade and A. B. Rahimov, “An approach to numerical solution of some inverse problems for parabolic equations,” Inverse Probl. Sci. Eng., 22, No. 1, 96–111 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  2. K. R. Aida-zade and A. B. Ragimov, “On the solution of a coefficient inverse problem,” Sib. Zh. Ind. Mat., 16, No. 2, 3–13 (2013).

    MathSciNet  Google Scholar 

  3. A. Ya. Akhundov and A. I. Gasanova, “On an inverse problem for a semilinear parabolic equation in the case of boundary value problem with nonlinear boundary condition,” Azerb. J. Math., 4, No. 2, 10–15 (2014).

    MathSciNet  MATH  Google Scholar 

  4. F. T. Akyildiz, Salih Tatar, and Suleyman Ulusoy, “Existence and uniqueness for a nonlinear inverse reaction-diffusion problem with a nonlinear source in higher dimensions,” Math. Methods Appl. Sci., 36, No. 17, 2397–2402 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  5. Yu. E. Anikonov and M. V. Neshchadim, “Analytical methods of the theory of inverse problems for parabolic equations,” J. Math. Sci., 195, No. 6, 754–770 (2013).

    Article  MathSciNet  Google Scholar 

  6. Yu. E. Anikonov, J. Cheng, and M. Yamamoto, “A uniqueness result in an inverse hyperbolic problem with analyticity,” Eur. J. Appl. Math., 15, No. 5, 533–543 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  7. Yu. E. Anikonov and M. Yamamoto, “Analytic representations of solutions to inverse problems for nonlinear equations,” J. Inverse Ill-Posed Probl., 17, No. 7, 695–701 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Ashyralyev and F. Ozesenli Tetikoglu, “A note on Bitsadze–Samarskii type nonlocal boundary value problems: Well-posedness,” Numer. Funct. Anal. Optim., 34, No. 9, 939–975 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Ashyralyev and E. Ozturk, “On Bitsadze–Samarskii type nonlocal boundary value problems for elliptic differential and difference equations: Well-posedness,” Appl. Math. Comput, 219, No. 3. 1093–1107 (2013).

    MathSciNet  MATH  Google Scholar 

  10. A. Ashyralyev and P. E. Sobolevskii, New Difference Schemes for Partial Differential Equations, Operator Theory Advances and Applications, Birkhäuser Verlag, Basel, Boston, Berlin (2004).

    Book  MATH  Google Scholar 

  11. A. Ashyralyev and P. E. Sobolevskii, “A note on the difference schemes for hyperbolic equations,” Abstr. Appl. Anal., 6, No. 2, 63–70 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Ashyralyev, C. Cuevas, and S. Piskarev, “On well-posedness of difference schemes for abstract elliptic equations in L p([0, T];E) spaces,” Numer. Funct. Anal. Optim., Vol. 29, Issue 1&2, 43–65 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  13. C. Ashyralyyev and M. Dedeturk, “Approximation of the inverse elliptic problem with mixed boundary value conditions and overdetermination,” Preprint (2014).

  14. C. Ashyralyyev and M. Dedeturk, “Approximate solution of inverse problem for elliptic equation with overdetermination,” Abstr. Appl. Anal., Art. ID 548017 (2013), 11 pp.

  15. F. Awawdeh, “Perturbation method for abstract second-order inverse problems,” Nonlinear Anal., 72, No. 3-4, 1379–1386 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  16. N. S. Bakhvalov, N. P. Zhidkov, and G. M. Kobel’kov, Numerical Methods [in Russian], Nauka, Moscow (1987).

    MATH  Google Scholar 

  17. G. Bal and G. Uhlmann, “Reconstruction of coefficients in scalar second-order elliptic equations from knowledge of their solutions,” Commun. Pure Appl. Math., 66, No. 10, 1629–1652 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  18. G. Bal, E. Bonnetier, F. Monard, and F. Triki, “Inverse diffusion from knowledge of power densities,” Inverse Probl. Imag., 7, No. 2, 353–375 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  19. V. Barbu and N. H. Pavel, “On the invertibility of I ± exp(−tA), t > 0, with A maximal monotone,” In: World Congress of Nonlinear Analysts ’92, Vols. I–IV, de Gruyter, Berlin (1996), pp. 2231–2237.

  20. L. Beilina, Nguyen Trung Thanh, M. V. Klibanov, and M. A. Fiddy, “Reconstruction from blind experimental data for an inverse problem for a hyperbolic equation,” Inverse Probl., 30, No. 2, 025002, (2014) 24 pp.

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Bellassoued and M. Yamamoto, “Inverse source problem for a transmission problem for a parabolic equation,” J. Inverse Ill-Posed Probl., 14, No. 1, 47–56 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Bellassoued and M. Yamamoto, “Determination of a coefficient in the wave equation with a single measurement,” Appl. Anal., 87, No. 8, 901–920 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Bellassoued, D. Jellali, and M. Yamamoto, “Lipschitz stability for a hyperbolic inverse problem by finite local boundary data,” Appl. Anal., 85, No. 10, 1219–1243 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Bellassoued, D. Jellali, and M. Yamamoto, “Stability estimate for the hyperbolic inverse boundary value problem by local Dirichlet-to-Neumann map,” J. Math. Anal. Appl., 343, No. 2, 1036–1046 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  25. Yu. Ya. Belov, “Inverse problems for parabolic equations,” J. Inverse Ill-Posed Probl., 1, No. 4, 283–305 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Benabdallah, M. Cristofol, P. Gaitan, and M. Yamamoto, “Inverse problem for a parabolic system with two components by measurements of one component,” Appl. Anal., 88, No. 5, 683–709 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  27. I. B. Bereznyts’ka, “Inverse problem of determination of the source in a general parabolic equation,” Mat. Stud., 18, No. 2, 169–176 (2002).

    MathSciNet  MATH  Google Scholar 

  28. W.-J. Beyn and S. Piskarev, “Shadowing for discrete approximations of abstract parabolic equations,” Discrete Contin. Dynam. Syst. Ser. B, Vol. 10, No. 1, 19–42 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  29. L. F. Borisova, “Inverse problem for parabolic high-order equations,” J. Inverse Ill-Posed Probl., 16, No. 3, 209–220 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  30. G. Bruckner and M. Yamamoto, “Determination of point wave sources by pointwise observations: Stability and reconstruction,” Inverse Probl., 16, No. 3, 723–748 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  31. A. L. Bukhgeim, J. Cheng, and M. Yamamoto, “Conditional stability in an inverse problem of determining a non-smooth boundary,” J. Math. Anal. Appl., 242, No. 1, 57–74 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  32. J. Cheng and M. Yamamoto, “The global uniqueness for determining two convection coefficients from Dirichlet to Neumann map in two dimensions,” Inverse Probl., 16, No. 3, L25–L30 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  33. J. Cheng and M. Yamamoto, “Determination of two convection coefficients from Dirichlet to Neumann map in the two-dimensional case,” SIAM J. Math. Anal., 35, No. 6, 1371–1393 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  34. J. Cheng and M. Yamamoto, “Identification of convection term in a parabolic equation with a single measurement,” Nonlinear Anal., Ser. A., 50, No. 2, 163–171 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  35. J. Cheng, Li Peng, and M. Yamamoto, “The conditional stability in line unique continuation for a wave equation and an inverse wave source problem,” Inverse Probl., 21, No. 6, 1993–2007 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  36. J. Cheng, Y. C. Hon, and M. Yamamoto, “Conditional stability for an inverse Neumann boundary problem,” Appl. Anal., 83, No. 1, 49–62 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  37. J. Cheng, G. Ding, and M. Yamamoto, “Uniqueness along a line for an inverse wave source problem,” Commun. Partial Differ. Equ., 27, No. 9-10, 2055–2069 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  38. W. Chojnacki, “Group representations of bounded cosine functions,” J. Rein. Angew. Math., 478, 61–84 (1996).

    MathSciNet  MATH  Google Scholar 

  39. W. Chojnacki, “On group decompositions of bounded cosine sequences,” Stud. Math., 181, No. 1, 61–85 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  40. M. Choulli and M. Yamamoto, “Uniqueness and stability in determining the heat radiative coefficient, the initial temperature and a boundary coefficient in a parabolic equation,” Nonlinear Anal., 69, No. 11, 3983–3998 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  41. M. Choulli and M. Yamamoto, “Some stability estimates in determining sources and coefficients,” J. Inverse Ill-Posed Probl., 14, No. 4, 355–373 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  42. M. Choulli and M. Yamamoto, “Generic well-posedness of a linear inverse parabolic problem with diffusion parameters,” J. Inverse Ill-Posed Probl., 7, No. 3, 241–254 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  43. D.-K. Chyan, S.-Y. Shaw, and S. Piskarev, “On maximal regularity and semivariation of cosine operator functions,” J. London Math. Soc. (2), 59, No. 3, 1023–1032 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  44. R. Cipolatti and M. Yamamoto, “An inverse problem for a wave equation with arbitrary initial values and a finite time of observations,” Inverse Probl., 27, No. 9, 095006 (2011), 15 pp.

    Article  MathSciNet  MATH  Google Scholar 

  45. P. Clement, H. J. A. M. Heijmans, S. Angenent, et al., One-Parameter Semigroups, CWIMonographs, 5. North-Holland Publishing Co., Amsterdam (1987).

    MATH  Google Scholar 

  46. A. M. Denisov, “The inverse problem for the diffusion equation with overdetermination in the form of external volume potential,” Zh. Vychisl. Mat. Mat. Fiz., 51, No. 9, 1695–1702 (2011); translation in Comput. Math. Math. Phys., 51, No. 9, 1588–1595 (2011).

  47. A. M. Denisov, “Inverse problems for a quasilinear hyperbolic equation in the case of a moving observation point,” Differ. Uravn., 45, No. 11, 1543–1553 (2009); translation in Differ. Equ., 45, No. 11, 1577–1587 (2009).

  48. A. M. Denisov and S. I. Solov’eva, “Inverse problem for the diffusion equation in the case of spherical symmetry,” Comput. Math. Math. Phys., 53, No. 11, 1607–1613 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  49. S. D’haeyer, B. T. Johansson, and M. Slodichka, “Reconstruction of a spacewise-dependent heat source in a time-dependent heat diffusion process,” IMA J. Appl. Math., 79, No. 1, 33–53 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  50. P. DuChateau, “An adjoint method for proving identifiability of coefficients in parabolic equations,” J. Inverse Ill-Posed Probl., 21, No. 5, 639–663 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  51. B. Eberhardt and G. Greiner, “Baillon’s theorem on maximal regularity,” Acta Appl. Math., 27, 47–54 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  52. H. Egger, J.-F. Pietschmann, and M. Schlottbom, “Simultaneous identification of diffusion and absorption coefficients in a quasilinear elliptic problem,” Inverse Probl., 30, No. 3, 035009 (2014), 8 pp.

    Article  MathSciNet  MATH  Google Scholar 

  53. H. O. Fattorini, Second-Order Linear Differential Equations in Banach Spaces, North-Holland, Amsterdam (1985).

    MATH  Google Scholar 

  54. U. M. Fedus, “An inverse problem for determining the heat capacity coefficient,” Mat. Stud., 25, No. 2, 126–140 (2006).

    MathSciNet  MATH  Google Scholar 

  55. A. Fraguela, J. A. Infante, A. M. Ramos, and J. M. Rey, “A uniqueness result for the identification of a time-dependent diffusion coefficient,” Inverse Probl., 29, No. 12, 125009 (2013), 17 pp.

    Article  MathSciNet  MATH  Google Scholar 

  56. H. Fujita and A. Mizutani, “On the finite element method for parabolic equations. I. Approximation of holomorphic semi-groups,” J. Math. Soc. Jpn., 28, No. 4, 749–771 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  57. P. Gaitan, H. Isozaki, O. Poisson, S. Siltanen, and J. P. Tamminen, “Inverse problems for timedependent singular heat conductivities-one-dimensional case,” SIAM J. Math. Anal., 45, No. 3, 1675–1690 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  58. G. C. Garcia, A. Osses, and M. Tapia, “A heat source reconstruction formula from single internal measurements using a family of null controls,” J. Inverse Ill-Posed Probl., 21, No. 6, 755–779 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  59. N. L. Gol’dman, “On a counterexample of inverse parabolic problems with final overdetermination,” Dokl. Math. 88, No. 3, 714–716 (2013); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk, 453, No. 5, 479–481 (2013).

  60. N. L. Gol’dman, “Finding the coefficient multiplying the time derivative in quasilinear parabolic equations in H¨older spaces,” Differ. Equ., 48, No. 12, 1563–1571 (2012); translation from Differ. Uravn., 48, No. 12, 1597–1606 (2012).

  61. N. L. Gol’dman, “On the properties of solutions of parabolic equations with unknown coefficients,” Differ. Uravn., 47, No. 1, 60–69 (2011); translation in Differ. Equ., 47, No. 1, 60–68 (2011).

  62. N. L. Gol’dman, “Determination of the right-hand side in a quasilinear parabolic equation with final observation,” Differ. Uravn., 41, No. 3, 366–374, 430 (2005); translation in Differ. Equ., 41, No. 3, 384–392 (2005).

  63. O. F. Gozukizil and M. Yaman, “A note on the unique solvability of an inverse problem with integral overdetermination,” Appl. Math. E-Notes, 8, 223–230 (2008).

    MathSciNet  MATH  Google Scholar 

  64. R. D. Grigorieff, “Diskrete Approximation von Eigenwertproblemen. II. Konvergenzordnung,” Numer. Math., 24, No. 5, 415–433 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  65. D. Guidetti, “Determining the source term in an abstract parabolic problem from a time integral of the solution,” In: Bruno Pini Mathematical Analysis Seminar 2011, 20 pp., Univ. Bologna, Alma Mater Stud., Bologna (2011).

  66. D. Guidetti, “Determining the source term in an abstract parabolic problem from a time integral of the solution,” Mediterr. J. Math., 9, No. 4, 611–633 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  67. D. Guidetti, “Partial reconstruction of the source term in a linear parabolic initial problem with Dirichlet boundary conditions,” Discrete Contin. Dyn. Syst., 33, No. 11-12, 5107–5141 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  68. D. Guidetti, “Partial reconstruction of the source term in a linear parabolic initial problem with first order boundary conditions,” Appl. Anal., 93, No. 3, 511–538 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  69. D. Guidetti, “Partial reconstruction of the source term in a linear parabolic initial value problem,” J. Math. Anal. Appl., 355, No. 2, 796–810 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  70. D. Guidetti, “Convergence to a stationary state of solutions to inverse problems of parabolic type,” Discrete Contin. Dynam. Syst. Ser. S, 6, No. 3, 711–722 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  71. D. Guidetti, B. Karasozen, and S. Piskarev, “Approximation of abstract differential equations,” J. Math. Sci., 122, No. 2, 3013–3054 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  72. A. Hasanov and B. Pektas, “Identification of an unknown time-dependent heat source term from overspecified Dirichlet boundary data by conjugate gradient method,” Comput. Math. Appl., 65, No. 1, 42–57 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  73. A. Hasanov, M. Otelbaev, and B. Akpayev, “Inverse heat conduction problems with boundary and final time measured output data,” Inverse Probl. Sci. Eng., 19, No. 7, 985–1006 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  74. A. Hasanov and M. Slodicka, “An analysis of inverse source problems with final time measured output data for the heat conduction equation: a semigroup approach,” Appl. Math. Lett., 26, No. 2, 207–214 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  75. Dinh Nho Hao, Phan Xuan Thanh, D. Lesnic, and M. Ivanchov, “Determination of a source in the heat equation from integral observations,” J. Comput. Appl. Math., 264, 82–98 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  76. A. Hazanee, M. I. Ismailov, D. Lesnic, and N. B. Kerimov, “An inverse time-dependent source problem for the heat equation,” Appl. Numer. Math., 69, 13–33 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  77. R. H. W. Hoppe, “A constructive approach to the Bellman semigroup,” Nonlinear Anal., 9, No. 11, 1165–1181 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  78. M. S. Hussein, D. Lesnic, and M. I. Ivanchov, “Simultaneous determination of time-dependent coefficients in the heat equation,” Comput. Math. Appl., 67, No. 5, 1065–1091 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  79. O. Yu. Imanuvilov and M. Yamamoto, “Uniqueness for inverse boundary value problems by Dirichlet-to-Neumann map on subboundaries,” Milan J. Math., 81, No. 2, 187–258 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  80. O. Yu. Imanuvilov and M. Yamamoto, “Inverse problem by Cauchy data on an arbitrary subboundary for systems of elliptic equations,” Inverse Probl., 28, No. 9, 095015, (2012), 30 pp.

    Article  MATH  Google Scholar 

  81. O. Yu. Imanuvilov, V. Isakov, and M. Yamamoto, “New realization of the pseudoconvexity and its application to an inverse problem,” Appl. Anal., 88, No. 5, 637–652 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  82. O. Yu. Imanuvilov, G. Uhlmann, and M. Yamamoto, “Determination of second-order elliptic operators in two dimensions from partial Cauchy data,” Proc. Natl. Acad. Sci. USA, 108, No. 2, 467–472 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  83. O. Yu. Imanuvilov, G. Uhlmann, and M. Yamamoto, “Inverse boundary value problem by measuring Dirichlet data and Neumann data on disjoint sets,” Inverse Probl., 27, No. 8, 085007 (2011), 26 pp.

    Article  MathSciNet  MATH  Google Scholar 

  84. O. Yu. Imanuvilov, G. Uhlmann, and M. Yamamoto, “Partial Cauchy data for general second order elliptic operators in two dimensions,” Publ. Res. Inst. Math. Sci., 48, No. 4, 971–1055 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  85. O. Yu. Imanuvilov and M. Yamamoto, “Stability estimate in a Cauchy problem for a hyperbolic equation with variable coefficients. Inverse problems: modeling and simulation,” J. Inverse Ill-Posed Probl., 13, No. 6, 583–594 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  86. O. Yu. Imanuvilov and M. Yamamoto, “Global Lipschitz stability in an inverse hyperbolic problem by interior observations,” In: Special issue to celebrate Pierre Sabatier’s 65th birthday (Montpellier, 2000), Inverse Probl., 17, No. 4, 717–728 (2001).

  87. O. Yu. Imanuvilov and M. Yamamoto, “Global uniqueness and stability in determining coefficients of wave equations,” Commun. Partial Differ. Equ., 26, No. 7-8, 1409–1425 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  88. V. Isakov, “Uniqueness for inverse parabolic problems with a lateral overdetermination,” Commun. Partial Differ. Equ., 14, No. 6, 681–689 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  89. V. Isakov, “Inverse parabolic problems with the final overdetermination,” Commun. Pure Appl. Math., 44, No. 2, 185–209 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  90. M. I. Ismailov and F. Kanca, “An inverse coefficient problem for a parabolic equation in the case of nonlocal boundary and overdetermination conditions,” Math. Methods Appl. Sci., 34, No. 6, 692–702 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  91. V. K. Ivanov, V. V. Vasin, and V. P. Tanana, Theory of Linear Ill-Posed Problems and Its Applications, VSP, Utrecht (2002).

    Book  MATH  Google Scholar 

  92. V. K. Ivanov, I. V. Mel’nikova, and A. I. Filinkov, Operator-Differential Equations and Ill-Posed Problems [in Russian], Nauka, Moscow (1995).

    MATH  Google Scholar 

  93. M. I. Ivanchov, “Inverse problem for a multidimensional heat equation with an unknown source function,” Mat. Stud., 16, No. 1, 93–98 (2001).

    MathSciNet  MATH  Google Scholar 

  94. M. I. Ivanchov, “Inverse problem for semilinear parabolic equation,” Mat. Stud., 29, No. 2, 181–191 (2008).

    MathSciNet  MATH  Google Scholar 

  95. S. I. Kabanikhin, Projection-Difference Methods for Calculation of Coefficients of Hyperbolic Equations [in Russian], Nauka, Novosibirsk (1988).

    MATH  Google Scholar 

  96. V. L. Kamynin, “On the inverse problem of determining the leading coefficient in a parabolic equation,” Mat. Zametki, 84, No. 1, 48–58 (2008); translation in Math. Notes, 84, No. 1-2, 45–54 (2008).

  97. V. L. Kamynin, “On the unique solvability of an inverse problem for parabolic equations with a final overdetermination condition,” Mat. Zametki, 73, No. 2, 217–227 (2003); translation in Math. Notes, 73, No. 1-2, 202–211 (2003).

  98. V. L. Kamynin, “On an inverse problem of determining the right-hand side of a parabolic equation with the integral overdetermination condition,” Mat. Zametki, 77, No. 4, 522–534 (2005); translation in Math. Notes, 77, No. 3-4, 482–493 (2005).

  99. V. L. Kamynin, “The inverse problem of determining the lower-order coefficient in parabolic equations with integral observation,” Mat. Zametki, 94, No. 2, 207–217 (2013); translation in Math. Notes, 94, No. 1-2, 205–213 (2013).

  100. V. L. Kamynin and E. Franchini, “An inverse problem for a higher-order parabolic equation, Mat. Zametki, 64, No. 5, 680–691 (1998); translation in Math. Notes, 64, No. 5-6, 590–599 (1998).

  101. F. Kanca, “The inverse problem of the heat equation with periodic boundary and integral overdetermination conditions,” J. Inequal. Appl., 2013, No. 108 (2013), 9 pp.

  102. F. Kanca, “Inverse coefficient problem of the parabolic equation with periodic boundary and integral overdetermination conditions,” Abstr. Appl. Anal., Art. ID 659804 (2013), 7 pp.

  103. F. Kanca and M. I. Ismailov, “The inverse problem of finding the time-dependent diffusion coefficient of the heat equation from integral overdetermination data,” Inverse Probl. Sci. Eng., 20, No. 4, 463–476 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  104. T. Kato, Perturbation Theory for Linear Operators. Springer-Verlag, Berlin (1995).

    Book  MATH  Google Scholar 

  105. N. B. Kerimov and M. I. Ismailov, “An inverse coefficient problem for the heat equation in the case of nonlocal boundary conditions,” J. Math. Anal. Appl., 396, No. 2, 546–554 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  106. S. Kim and M. Yamamoto, “Uniqueness in identification of the support of a source term in an elliptic equation,” SIAM J. Math. Anal., 35, No. 1, 148–159 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  107. J. Kisynski, “On cosine operator functions and one parameter groups of operators,” Stud. Match., 44, 93–105 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  108. V. Komornik and M. Yamamoto, “Upper and lower estimates in determining point sources in a wave equation,” Inverse Probl., 18, No. 2, 319–329 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  109. A. B. Kostin, “The inverse problem of reconstructing a source in a parabolic equation from the nonlocal observation condition,” Mat. Sb., 204, No. 10, 3–46 (2013); translation in Sb. Math., 204, No. 9-10, 1391–1434 (2013).

  110. A. B. Kostin, “Counterexamples in inverse problems for parabolic, elliptic, and hyperbolic equations,” Comput. Math. Math. Phys., 54, No. 5, 797–810 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  111. A. I. Kozhanov and R. R. Safiullova, “Linear inverse problems for parabolic and hyperbolic equations,” J. Inverse Ill-Posed Probl., 18, No. 1, 1–24 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  112. M. A. Krasnosel’skii, E. A. Lifshits, and A. V. Sobolev, Positive Linear Systems. The Method of Positive Operators, Heldermann Verlag, Berlin (1989).

    MATH  Google Scholar 

  113. S. G. Krein, Linear Differential Equations in Banach Spaces, Am. Math. Soc., Providence, Rhode Island (1971).

  114. S. G. Krein and G. I. Laptev, “Boundary-value problems for second-order differential equations in Banach spaces, I,” Differ. Uravn., 2, No. 3, 382–390 (1966).

    MathSciNet  MATH  Google Scholar 

  115. S. G. Krein and G. I. Laptev, “Well-posedness of boundary-value problems for second-order differential equations in Banach spaces, II,” Differ. Uravn., 2, No. 7, 919–926 (1966).

    Google Scholar 

  116. S. G. Krein and G. I. Laptev, “Boundary-value problems for equations in Hilbert spaces,” Dokl. Akad. Nauk SSSR, 146, No. 3, 535–538 (1962).

    MathSciNet  Google Scholar 

  117. C.-C. Kuo, “On α-times integrated C-semigroups and the abstract Cauchy problem,” Stud. Math., 142, 201–217 (2000).

    Article  MathSciNet  Google Scholar 

  118. M. M. Lavrent’ev, V. G. Romanov, and S. P. Shishatskii, Ill-Posed Problems of Mathematical Physics and Analysis, Am. Math. Soc., Providence, Rhode Island (1986).

  119. D. Lesnic, S. A. Yousefi, and M. Ivanchov, “Determination of a time-dependent diffusivity from nonlocal conditions,” Appl. Math. Comput., 41, No. 1-2, 301–320 (2013).

    MathSciNet  MATH  Google Scholar 

  120. S. Li, B. Miara, and M. Yamamoto, “A Carleman estimate for the linear shallow shell equation and an inverse source problem,” Discrete Contin. Dyn. Syst., 23, No. 1-2, 367–380 (2009).

    MathSciNet  MATH  Google Scholar 

  121. Y.-C. Li and S.-Y. Shaw, “On generators of integrated C-semigroups and C-cosine functions,” Semigroup Forum, 47, 29–35 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  122. Y.-C. Li and S.-Y. Shaw, N-times integrated C-semigroups and the abstract Cauchy problem, Taiwan. J. Math., 1, 75–102 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  123. I. K. Lifanov, L. N. Poltavskii, and G. M. Vainikko, “Hypersingular integral equations and their applications,” In: Differential and Integral Equations and Their Applications. 4, Chapman & Hall/CRC Press, Boca Raton, Florida (2004), 396 p.

  124. L. Ling, Y. C. Hon, and M. Yamamoto, “Inverse source identification for Poisson equation,” Inverse Probl. Sci. Eng., 13, No. 4, 433–447 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  125. L. Ling, M. Yamamoto, Y. C. Hon, and T. Takeuchi, “Identification of source locations in two-dimensional heat equations,” Inverse Probl., 22, No. 4, 1289–1305 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  126. A. Lorenzi and I. I. Vrabie, “Identification for a semilinear evolution equation in a Banach space,” Inverse Probl., 26, No. 8, 085009, (2010), 16 pp.

    Article  MathSciNet  MATH  Google Scholar 

  127. L. A. Lusternik and V. I. Sobolev, Elements of Functional Analysis [in Russian], Moscow (1965).

  128. A. S. Lyubanova, “Identification of a constant coefficient in a quasi-linear elliptic equation,” J. Inverse Ill-Posed Probl., 22, No. 3, 341–356 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  129. Y. T. Mehraliyev and F. Kanca, “An inverse boundary value problem for a second order elliptic equation in a rectangle,” Math. Model. Anal., 19, No. 2, 241–256 (2014).

    Article  MathSciNet  Google Scholar 

  130. V. A. Morozov, Methods for the Regularization of Unstable Problems [in Russian], Moscow (1987).

  131. V. A. Morozov, Regular Methods for Solving Ill-Posed Problems [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  132. R. Nagel, et al., One-Parameter Semigroups of Positive Operators, Springer-Verlag, Berlin (1986).

    MATH  Google Scholar 

  133. D. G. Orlovsky, “An inverse problem for a second order differential equation in a Banach space,” Differ. Equ., 25, No. 6, 1000–1009 (1989).

    MathSciNet  Google Scholar 

  134. D. G. Orlovsky, “Inverse Dirichlet problem for an equation of elliptic type,” Differ. Equ., 44, No. 1, 124–134 (2008).

    Article  MathSciNet  Google Scholar 

  135. D. G. Orlovsky, “An inverse problem of determining a parameter of an evolution equation,” Differ. Equ., 26, No. 9, 1614–1621 (1990).

    Google Scholar 

  136. D. G. Orlovsky, “Fredholm-type solvability of inverse boundary value problems for abstract differential equations of second order,” Differ. Equ., 28, No. 4, 1614–1621 (1992).

    MathSciNet  Google Scholar 

  137. D. G. Orlovsky, “Inverse problem for elliptic equation in a Banach space with Bitsadze–Samarsky boundary value conditions,” J. Inverse Ill-Posed Probl., 21, No. 1, 141–157 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  138. D. Orlovsky and S. Piskarev, “On approximation of inverse problems for abstract elliptic problems,” J. Inverse Ill-posed Problems, 17, No. 8, 765–782 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  139. D. Orlovsky and S. Piskarev, “Approximation of inverse Bitzadze–Samarsky problem for elliptic eqaution with Dirichlet conditions,” Differ. Equ., No. 7 (2013).

  140. D. Orlovsky, S. Piskarev, and R. Spigler, “On approximation of inverse problems for abstract hyperbolic equations,” Taiwan. J. Math., Vol. 14, No. 3B, 1145–1167 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  141. E. Ozbilge, “Determination of the unknown boundary condition of the inverse parabolic problems via semigroup method,” Bound. Value Probl., 2013, No. 2 (2013), 7 pp.

  142. E. Ozbilge, “Convergence theorem for a numerical method of a 1D coefficient inverse problem,” Appl. Anal., 93, No. 8, 1611–1625 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  143. S. I. Piskarev, “ On approximation of holomorphic semigroups,” Tartu Ül. Toimetised, 492, 3–23 (1979).

    MathSciNet  MATH  Google Scholar 

  144. S. Piskarev, Differential Equations in Banach Space and Their Approximation [in Russian], Moscow (2005).

  145. S. Piskarev, “Discretisation of abstract hyperbolic equation,” Tartu Ül. Toimetised, 500, 3–23 (1979).

    MathSciNet  Google Scholar 

  146. S. Piskarev, “Solution of a second order evolution equation under the Krein–Fattorini conditions,” Differ. Equ., 21, 1100–1106 (1985).

    MathSciNet  MATH  Google Scholar 

  147. S. I. Piskarev, “Error estimates in the approximation of semigroups of operators by Padé fractions,” Izv. Vyssh. Uchebn. Zaved., Mat., 4, 33–38 (1979).

    MATH  Google Scholar 

  148. S. I. Piskarev, “Approximation of positive C 0-semigroups of operators,” Differ. Uravn., 27, No. 7, 1245–1250, 1287 (1991).

  149. R. Pourgholi, A. A. Molai, and T. Houlari, “Resolution of an inverse parabolic problem using sinc-Galërkin method,” TWMS J. Appl. Eng. Math., 3, No. 2, 160–181 (2013).

    MathSciNet  MATH  Google Scholar 

  150. R. Pourgholi and A. Esfahani, “An efficient numerical method for solving an inverse wave problem,” Int. J. Comput. Methods, 10, No. 3, 1350009, 21 pp. (2013).

    Article  MathSciNet  MATH  Google Scholar 

  151. G. Da Prato and P. Grisvard, “Sommes d’operateus lieaires et equations differentielles operationnelles,” J. Math. Pures Appl., 54, No. 3, 305–387 (1975).

    MathSciNet  MATH  Google Scholar 

  152. G. Da Prato and P. Grisvard, “Équations d’evolution abstraites non linus eaires de type parabolique,” C. R. Acad. Sci. Paris, Ser. A-B, 283, No. 9, A709–A711 (1976).

    Google Scholar 

  153. A. I. Prilepko, “Inverse problems in potential theory (elliptic, parabolic, hyperbolic equations and transport equation),” Math. Notes, 14, No. 5, 755–767 (1973).

    Article  Google Scholar 

  154. A. I. Prilepko, “Selected topics on inverse problems of mathematical physics,” in: Conditionally Well Posed Problems in Mathenatical Physics and Analysis (ed. V. Romanov) [in Russian], Nauka, Novosibirsk, 151–162 (1992).

  155. A. I. Prilepko and A. B. Kostin, “An estimate for the spectral radius of an operator and the solvability of inverse problems for evolution equations,” Mat. Zametki, 53, No. 1, 89–94 (1993).

    MathSciNet  MATH  Google Scholar 

  156. A. I. Prilepko, D. G. Orlovsky, and I. A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, New York (2000).

    MATH  Google Scholar 

  157. A. Prilepko, S. Piskarev, and S.-Y. Shaw, “On inverse problem for abstract differential equations in Banach spaces,” Inverse Ill-Posed Probl., 15, 831–851 (2007).

    MathSciNet  MATH  Google Scholar 

  158. A. I. Prilepko and I. V. Tikhonov, “Reconstruction of the inhomogeneous term in an abstract evolution equation,” Izv. Ross. Akad. Nauk Ser. Mat., 58, No. 2, 167–188 (1994).

    MathSciNet  MATH  Google Scholar 

  159. A. I. Prilepko and I. V. Tikhonov, “The principle of the positity of a solution to a linear inverse problem and its application to the heat conduction coefficient problem,” Dokl. Ross. Akad. Nauk, 364, No. 1, 21–23 (1999).

    MathSciNet  MATH  Google Scholar 

  160. A. I. Prilepko and I. V. Tikhonov, “Uniqueness of the solution of an inverse problem for an evolution equation and applications to the transfer equation,” Mat. Zametki, 51, No. 2, 77–87, 158 (1992).

  161. A. I. Prilepko and I. V. Tikhonov, “An inverse problem with final overdetermination for an abstract evolution equation in an ordered Banach space,” Funkts. Anal. Prilozh., 27, No. 1, 81–83 (1993); translation in Funct. Anal. Appl., 27, No. 1, 68–69 (1993).

  162. A. I. Prilepko and D. S. Tkachenko, “The Fredholm property of the inverse source problem for parabolic systems,” Differ. Equ., 39, No. 12, 1785–1793 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  163. A. I. Prilepko and D. S. Tkachenko, “The Fredholm property and the well-posedness of the inverse source problem with integral overdetermination,” Comput. Math. Math. Phys., 43, No. 9, 1338–1347 (2003).

    MathSciNet  MATH  Google Scholar 

  164. A. I. Prilepko and D. S. Tkachenko, “Properties of solutions of a parabolic equation and the uniqueness of the solution of the inverse source problem with integral overdetermination,” Comput. Math. Math. Phys., 43, No. 4, 537–546 (2003).

    MathSciNet  MATH  Google Scholar 

  165. A. I. Prilepko and D. S. Tkachenko, “Inverse problem for a parabolic equation with integral overdetermination,” J. Inverse Ill-Posed Probl., 11, No. 2, 191–218 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  166. A. I. Prilepko and D. S. Tkachenko, “An inverse problem for a parabolic equation with final overdetermination,” Ill-Posed Inverse Probl., 345–381 (2002).

  167. S. G. Pyatkov and A. G. Borichevskaya, “On an inverse problem for a parabolic equation with Cauchy data on a part of the lateral surface of a cylinder,” Sibirsk. Mat. Zh., 54, No. 2, 436–449 (2013); translation in Sib. Math. J., 54, No. 2, 341–352 (2013).

  168. Rakesh and P. Sacks, “Uniqueness for a hyperbolic inverse problem with angular control on the coefficients,” J. Inverse Ill-Posed Probl., 19, No. 1, 107–126 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  169. A. Rhoden, Applications and adaptations of a globally convergent numerical method in inverse problems, Ph.D. Thesis, The University of Texas at Arlington, (2013), 93 pp.

  170. A. Rhoden, N. Patong, Y. Liu, J. Su, and H. Liu, “A globally convergent numerical method for coefficient inverse problems with time-dependent data. Applied inverse problems,” Springer Proc. Math. Stat., 48, 105–128, Springer, New York (2013).

  171. A. V. Rozanova, “Controllability in a nonlinear parabolic problem with integral overdetermination,” Differ. Uravn., 40, No. 6, 798–815, 862 (2004); translation in Differ. Equ., 40, No. 6, 853–872 (2004).

  172. K. Sakamoto and M. Yamamoto, “Inverse heat source problem from time distributing overdetermination,” Appl. Anal., 88, No. 5, 735–748 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  173. A. A. Samarskij and E. S. Nikolaev, Numerical Methods for Grid Equations, Vol. I: Direct Methods; Vol. II: Iterative Methods; Birkhäuser Verlag (1989).

  174. A. A. Samarskii, The Theory of Difference Schemes, Marcel Dekker, New York (2001).

    Book  MATH  Google Scholar 

  175. A. A. Samarskii and P. N. Vabishchevich, Numerical Methods for Inverse Problems in Mathematical Physics, URSS (2004).

  176. A. A. Samarskii, P. P. Matus, and P. N. Vabishchevich, Difference Schemes with Operator Factors, Kluwer Academic Publishers, Dordrecht (2002).

    Book  MATH  Google Scholar 

  177. A. Yu. Shcheglov, “Iterative method for recovery a nonlinear source in a hyperbolic equation with final overdetermination,” J. Inverse Ill-Posed Probl., 10, No. 6, 629–641 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  178. A. Yu. Shcheglov, “A method for determining the coefficients of a quasilinear hyperbolic equation,” Zh. Vychisl. Mat. Mat. Fiz., 46, No. 5, 813–833 (2006); translation in Comput. Math. Math. Phys., 46, No. 5, 776–795 (2006).

  179. A. Shidfar, A. Babaei, and A. Molabahrami, “Solving the inverse problem of identifying an unknown source term in a parabolic equation,” Comput. Math. Appl., 60, No. 5, 1209–1213 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  180. Y. V. Sidorov, M. V. Fedoruk, and M. I. Shabunin, Lectures on the Theory of Function of a Complex Variable [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  181. H. A. Snitko, “Determination of the lowest coefficient for a one-dimensional parabolic equation in a domain with free boundary,” Mat. Zh., 65, No. 11, 1531–1549 (2013).

    MathSciNet  Google Scholar 

  182. G. A. Snitko, “The inverse problem of finding time-dependent functions in a lower-order coefficient in a parabolic problem in a free boundary domain,” Mat. Metod. Fiz.-Mekh. Polya, 56, No. 2, 37–47 (2013); translation in J. Math. Sci. (N.Y.), 203, No. 1, 40–54 (2014).

  183. P. E. Sobolevskii, “On elliptic equations in a Banach space,” Differ. Equ., 4, No. 7, 1346–1348 (1969).

    MathSciNet  Google Scholar 

  184. P. E. Sobolevskii, “Some properties of the solutions of differential equations in fractional spaces,” Tr. Nauchn. Issled. Inst. Mat. Voronezh. Gos. Univ., 74, 68–76 (1975).

    Google Scholar 

  185. P. E. Sobolevskii, “The theory of semigroups and the stability of difference schemes,” In: Operator Theory in Function Spaces [in Russian], Proc. School, Novosibirsk (1975), pp. 304–337; Nauka, Sibirsk. Otdel., Novosibirsk (1977).

  186. P. E. Sobolevskii and L. M. Chebotaryeva, “Approximate solution of the Cauchy problem for an abstract hyperbolic equation by the method of lines,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 5 (180), 103–116 (1977).

  187. V. V. Solov’ev, “Inverse problems of source determination for the two-dimensional Poisson equation,” Comput. Math. Math. Phys., 44, No. 5, 815–824 (2004).

    MathSciNet  Google Scholar 

  188. V. V. Soloviev, “Inverse problems of determining a source of a Poisson equation on the plain,” Zh. Vychisl. Mat. Mat. Fiz., 44, No. 5, 862–871 (2004).

    MathSciNet  Google Scholar 

  189. V. V. Solov’ev, “Inverse problems for elliptic equations on the plane. I,” Differ. Uravn., 42, No. 8, 1106–1114, 1151 (2006); translation in Differ. Equ., 42, No. 8, 1170–1179 (2006).

  190. V. V. Solov’ev, “Inverse problems for elliptic equations on the plane. II,” Differ. Uravn., 43, No. 1, 101–109, 142 (2007); translation in Differ. Equ., 43, No. 1, 108–117 (2007).

  191. V. V. Solov’ev, “Inverse coefficient problems for elliptic equations in a cylinder: I,” Differ. Uravn., 49, No. 8, 1026–1035 (2013); translation in Differ. Equ., 49, No. 8, 996–2005 (2013).

  192. V. V. Solov’ev, “Inverse problems for elliptic equations in the space. II,” Differ. Uravn., 47, No. 5, 714–723 (2011); translation in Differ. Equ., 47, No. 5, 715–725 (2011).

  193. V. V. Solov’ev, “The inverse problem of determining the coefficient in the Poisson equation in a cylinder,” Zh. Vychisl. Mat. Mat. Fiz., 51, No. 10, 1849–1856 (2011); translation in Comput. Math. Math. Phys., 51, No. 10, 1738–1745 (2011).

  194. V. V. Solov’ev, “Inverse problems of determining the source and coefficient in an elliptic equation in a rectangle,” Zh. Vychisl. Mat. Mat. Fiz., 47, No. 8, 1365–1377 (2007); translation in Comput. Math. Math. Phys., 47, No. 8, 1310–1322 (2007).

  195. M. Sova, “Cosine operator functions,” Rozpr. Mat., 49, 1–47 (1966).

    MathSciNet  MATH  Google Scholar 

  196. P. Stefanov and G. Uhlmann, “Recovery of a source term or a speed with one measurement and applications,” Trans. Am. Math. Soc., 365, No. 11, 5737–5758 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  197. F. Stummel, “Diskrete Konvergenz linearer Operatoren. III,” In: Linear Operators and Approximation (Proc. Conf., Oberwolfach, 1971), 196–216; Intern. Ser. Numer. Math., Vol. 20. Birkhäuser, Basel (1972).

  198. V. Thomée, Galërkin Finite Element Methods for Parabolic Problems, Springer, Berlin (1997).

    Book  MATH  Google Scholar 

  199. I. V. Tikhonov, “Solvability of a linear inverse problem with final overdetermination in a Banach space of L 1-type,” Fundam. Prikl. Mat., 4, No. 2, 691–708 (1998).

    MathSciNet  MATH  Google Scholar 

  200. I. V. Tikhonov, “A connection between inverse problems and terminal and integral overdeterminations,” Usp. Mat. Nauk, 47, No. 4(286), 211–212 (1992).

    MathSciNet  Google Scholar 

  201. I. V. Tikhonov and Yu. S. Eidelman, “A uniqueness criterion in an inverse problem for an abstract differential equation with a nonstationary inhomogeneous term,” Math. Notes, 77, No. 1–2, 246–262 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  202. I. V. Tikhonov and Yu. S. Eidelman, “Theorems on the mapping of the point spectrum for C 0-semigroups and their application to uniqueness problems for abstract differential equations,” Dokl. Akad. Nauk, 394, No. 1, 32–35 (2004).

    MathSciNet  Google Scholar 

  203. I. V. Tikhonov and Yu. S. Eidelman, “Uniqueness of the solution of a two-point inverse problem for an abstract differential equation with an unknown parameter, Differ. Equ., 36, No. 8, 1256–1258 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  204. A. N. Tikhonov, A. S. Leonov, and A. G. Yagola, Nonlinear Ill-Posed Problems, Vols. 1, 2. Chapman & Hall, London (1998).

    MATH  Google Scholar 

  205. C. C. Travis and G. F. Webb “Second order differential equations in Banach space,” In: Nonlinear Equations in Abstract Space, 331–361 (1978).

  206. C. C. Travis and G. F. Webb “Cosine families and abstract non-linear second order differential equations,” Acta Math. Acad. Sci. Hung., 32, No. 3–4, 75–96 (1978).

    Article  MATH  Google Scholar 

  207. T. Ushijima, “Approximation theory for semi-groups of linear operators and its application to approximation of wave equations,” Jpn. J. Math. (N.S.), 1, No. 1, 185–224 (1975/76).

  208. G. Vainikko, Funktionalanalysis der Diskretisierungsmethoden, Leipzig, B. G. Teubner Verlag (1976).

    MATH  Google Scholar 

  209. G. Vainikko, “Approximative methods for nonlinear equations (two approaches to the convergence problem),” Nonlinear Anal., 2, 647–687 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  210. G. Vainikko and S. Piskarev, “Regularly compatible operators,” Izv. Vuzov. Mat., 10, 25–36 (1977).

    MathSciNet  MATH  Google Scholar 

  211. K. Van Bockstal and M. Slodichka, “Determination of a time-dependent diffusivity in a nonlinear parabolic problem,” Inverse Probl. Sci. Eng., 23, No. 2, 307–330 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  212. V. V. Vasil’ev, S. G. Krein, and S. Piskarev, “Operator semigroups, cosine operator functions, and linear differential equations,” J. Sov. Math., 54, No. 4, 1042–1129 (1991).

    Article  MATH  Google Scholar 

  213. V. V. Vasil’ev and S. I. Piskarev, “Differential equations in Banach spaces. II. Theory of cosine operator functions,” J. Math. Sci. (N.Y.), 122, No. 2, 3055–3174 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  214. V. V. Vasil’ev and S. I. Piskarev, Differential Equations in Banach Spaces I. Semigroup Theory [in Russian], Moscow State University Publish House (1996), 164 p.

  215. J. Voigt, “On the convex compactness property for the strong operator topology,” Note Mat., 12, 259–269 (1992).

    MathSciNet  MATH  Google Scholar 

  216. B. Wang, “Moving least squares method for a one-dimensional parabolic inverse problem,” Abstr. Appl. Anal., Art. ID 686020 (2014), 12 pp.

  217. Y. B. Wang, J. Cheng, J. Nakagawa, and M. Yamamoto, “A numerical method for solving the inverse heat conduction problem without initial value,” Inverse Probl. Sci. Eng., 18, No. 5, 655–671 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  218. T. Wei and M. Yamamoto, “Reconstruction of a moving boundary from Cauchy data in onedimensional heat equation,” Inverse Probl. Sci. Eng., 17, No. 4, 551–567 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  219. J. Wen, M. Yamamoto, and T. Wei, “Simultaneous determination of a time-dependent heat source and the initial temperature in an inverse heat conduction problem,” Inverse Probl. Sci. Eng., 21, No. 3, 485–499 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  220. M. Yamamoto and Xu Zhang, “Global uniqueness and stability for an inverse wave source problem for less regular data,” J. Math. Anal. Appl., 263, No. 2, 479–500 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  221. M. Yamamoto and Jun Zou, “Simultaneous reconstruction of the initial temperature and heat radiative coefficient,” In: Special issue to celebrate Pierre Sabatier’s 65th birthday (Montpellier, 2000), Inverse Probl., 17, No. 4, 1181–1202.

  222. L. Yang, M. Dehghan, Jian-Ning Yu, and Guan-Wei Luo, “Inverse problem of time-dependent heat sources numerical reconstruction,” Math. Comput. Simul., 81, No. 8, 1656–1672 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  223. N. Yaparova, “Numerical methods for solving a boundary-value inverse heat conduction problem,” Inverse Probl. Sci. Eng., 22, No. 5, 832–847 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  224. O. Zair, “Determination of point sources in vibrating plate by boundary measurements,” Appl. Anal., 92, No. 10, 2061–2075 (2013).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Orlovsky.

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory, Vol. 133, Functional Analysis, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlovsky, D.G., Piskarev, S.I. On Approximation of Coefficient Inverse Problems for Differential Equations in Functional Spaces. J Math Sci 230, 823–906 (2018). https://doi.org/10.1007/s10958-018-3798-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-018-3798-9

Keywords and phrases

AMS Subject Classification

Navigation