Skip to main content
Log in

Convergence and Complexity Analysis of a Levenberg–Marquardt Algorithm for Inverse Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The Levenberg–Marquardt algorithm is one of the most popular algorithms for finding the solution of nonlinear least squares problems. Across different modified variations of the basic procedure, the algorithm enjoys global convergence, a competitive worst-case iteration complexity rate, and a guaranteed rate of local convergence for both zero and nonzero small residual problems, under suitable assumptions. We introduce a novel Levenberg-Marquardt method that matches, simultaneously, the state of the art in all of these convergence properties with a single seamless algorithm. Numerical experiments confirm the theoretical behavior of our proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Tarantola, A.: Inverse Problem Theory and Methods for Model Parameter Estimation. SIAM, Philadelphia (2005)

    Book  Google Scholar 

  2. Trémolet, Y.: Model error estimation in 4D-Var. Q. J. R. Meteorol. Soc. 133, 1267–1280 (2007)

    Article  Google Scholar 

  3. Levenberg, K.: A method for the solution of certain problems in least squares. Quart. Appl. Math. 2, 164–168 (1944)

    Article  MathSciNet  Google Scholar 

  4. Marquardt, D.: An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11, 431–441 (1963)

    Article  MathSciNet  Google Scholar 

  5. Osborne, M.R.: Nonlinear least squares—the Levenberg algorithm revisited. J. Austral. Math. Soc. Ser. B 19, 343–357 (1976)

    Article  MathSciNet  Google Scholar 

  6. Yamashita, N., Fukushima, M.: On the rate of convergence of the Levenberg–Marquardt method. In: Topics in Numerical Analysis, pp. 239–249. Springer (2001)

  7. Fan, J., Yuan, Y.: On the quadratic convergence of the Levenberg–Marquardt method without nonsingularity assumption. Computing 74, 23–39 (2005)

    Article  MathSciNet  Google Scholar 

  8. Dan, H., Yamashita, N., Fukushima, M.: Convergence properties of the inexact Levenberg–Marquardt method under local error bound conditions. Optim. Methods Softw. 17, 605–626 (2002)

    Article  MathSciNet  Google Scholar 

  9. Facchinei, F., Fischer, A., Herrich, M.: A family of newton methods for nonsmooth constrained systems with nonisolated solutions. Math. Methods Oper. Res. 77, 433–443 (2013)

    Article  MathSciNet  Google Scholar 

  10. Ipsen, I.C.F., Kelley, C.T., Pope, S.R.: Rank-deficient nonlinear least squares problems and subset selection. SIAM J. Numer. Anal. 49, 1244–1266 (2011)

    Article  MathSciNet  Google Scholar 

  11. Fan, J.: Convergence rate of the trust region method for nonlinear equations under local error bound condition. Comput. Optim. Appl. 34, 215–227 (2006)

    Article  MathSciNet  Google Scholar 

  12. Conn, A.R., Gould, N.I.M., Toint, PhL: Trust-Region Methods. SIAM, Philadelphia, PA, USA (2000)

    Book  Google Scholar 

  13. Ueda, K., Yamashita, N.: On a global complexity bound of the Levenberg–Marquardt method. J. Optim. Theory Appl. 147, 443–453 (2010)

    Article  MathSciNet  Google Scholar 

  14. Ueda, K., Yamashita, N.: Global complexity bound analysis of the Levenberg–Marquardt method for nonsmooth equations and its application to the nonlinear complementarity problem. J. Optim. Theory Appl. 152, 450–467 (2012)

    Article  MathSciNet  Google Scholar 

  15. Zhao, R., Fan, J.: Global complexity bound of the Levenberg–Marquardt method. Optim. Methods Softw. 31, 805–814 (2016)

    Article  MathSciNet  Google Scholar 

  16. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  17. Bergou, E., Gratton, S., Vicente, L.N.: Levenberg–Marquardt methods based on probabilistic gradient models and inexact subproblem solution, with application to data assimilation. SIAM/ASA J. Uncertain. Quantif. 4, 924–951 (2016)

    Article  MathSciNet  Google Scholar 

  18. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, Berlin (2013)

    MATH  Google Scholar 

  19. Fischer, A., Shukla, P., Wang, M.: On the inexactness level of robust Levenberg–Marquardt methods. Optimization 59, 273–287 (2010)

    Article  MathSciNet  Google Scholar 

  20. Moré, J.J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained optimization software. ACM Trans. Math. Softw. 7, 17–41 (1981)

    Article  MathSciNet  Google Scholar 

  21. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Clément Royer and the referees for their careful readings and corrections that helped us to improve our manuscript significantly. Support for Vyacheslav Kungurtsev was provided by the OP VVV Project CZ.02.1.01/0.0/0.0/16_019/0000765 “Research Center for Informatics”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youssef Diouane.

Additional information

Communicated by Nobuo Yamashita.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergou, E.H., Diouane, Y. & Kungurtsev, V. Convergence and Complexity Analysis of a Levenberg–Marquardt Algorithm for Inverse Problems. J Optim Theory Appl 185, 927–944 (2020). https://doi.org/10.1007/s10957-020-01666-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-020-01666-1

Keywords

Mathematics Subject Classification

Navigation