Skip to main content
Log in

An Adaptive Multipoint Formulation for Robust Parametric Optimization

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The performance of a system designed for given functioning conditions often seriously degrades, when operated at other conditions. Therefore, a system operating over a continuous range of conditions should be designed over this range. The aerodynamic shape optimization of an aircraft at multiple altitudes, angles of attack and Mach numbers is a typical case in aerospace. This paper links parametric and multipoint optimizations by the sampling of the operating condition ranges. It is demonstrated that this discrete set of operating conditions, used to formulate a composite objective function, must adequately be chosen. An algorithm is proposed to select these conditions, which ensures a minimal computational cost to the robust optimization. Wing aerodynamic multipoint optimizations using a lifting line model and Reynolds-averaged Navier–Stokes equations, derived with a discrete adjoint formulation, are given as examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hicks, R.M., Vanderplaats, G.N.: Application of numerical optimization to the design of supercritical airfoils without drag creep. In: Business Aircraft Meeting, Paper 770440. Society of Automotive Engineers, Wichita (1977)

  2. Drela, M.: Pros and cons of airfoil optimization. In: Frontiers of Computational Fluid Dynamics, pp. 363–381. World Scientific, Singapore (1998)

  3. Li, W., Huyse, L., Padula, S.: Robust airfoil optimization to achieve consistent drag reduction over a Mach range. Struct. Multidiscip. Optim. 24(1), 38–50 (2002)

    Article  Google Scholar 

  4. Beyer, H.G., Sendhoff, B.: Robust optimization—a comprehensive survey. Comput. Methods Appl. Mech. Eng. 196(33–34), 3190–3218 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Campbell, R.L.: Efficient viscous design of realistic aircraft configurations. In: 29th AIAA, Fluid Dynamics Conference, 98–2539. American Institute of Aeronautics and Astronautics, Albuquerque (1998)

  6. Reuther, J.J., Jameson, A., Alonso, J.J., Rimlinger, M.J., Saunders, D.: Constrained multipoint aerodynamic shape optimization using an adjoint formulation and parallel computers, part 1. J. Aircr. 36(1), 51–60 (1999)

    Article  Google Scholar 

  7. Reuther, J.J., Jameson, A., Alonso, J.J., Rimlinger, M.J., Saunders, D.: Constrained multipoint aerodynamic shape optimization using an adjoint formulation and parallel computers, part 2. J. Aircr. 36(1), 61–74 (1999)

    Article  Google Scholar 

  8. Buckley, H.P., Zhou, B.Y., Zingg, D.W.: Airfoil optimization using practical aerodynamic design requirements. J. Aircr. 47(5), 1707–1719 (2010)

    Article  Google Scholar 

  9. Jameson, A., Leoviriyakit, K., Shankaran, S.: Multi-point aero-structural optimization of wings including planform variations. In: 45th Aerospace Sciences Meeting and Exhibit, AIAA Paper 2007–764, Reno, Nevada (2007)

  10. Zingg, D., Elias, S.: Aerodynamic optimization under a range of operating conditions. AIAA J. 44(11), 2787–2792 (2006)

    Article  Google Scholar 

  11. Das, I., Dennis, J.E.: Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J. Optim. 8(3), 631–657 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Messac, A., Ismail-Yahaya, A., Mattson, C.: The normalized normal constraint method for generating the Pareto frontier. Struct. Multidiscip. Optim. 25, 86–98 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Mueller-Gritschneder, D., Graeb, H.E., Schlichtmann, U.: A successive approach to compute the bounded Pareto front of practical multiobjective optimization problems. SIAM J. Optim. 20(2), 915–934 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Erfani, T., Utyuzhnikov, S.V.: Directed search domain: a method for even generation of the Pareto frontier in multiobjective optimization. Eng. Optim. 43(5), 467–484 (2011)

    Article  MathSciNet  Google Scholar 

  15. Désidéri, J.A.: Mgda variants for multi-objective optimization. Tech. Rep. 8068, Rapport de Recherche INRIA (2012)

  16. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9(2), 159–195 (2001)

    Article  Google Scholar 

  17. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  18. Marco, N., Désidéri, J.A., Lanteri, S.: Multi-objective optimization in CFD by genetic algorithms. Technical Report RR-3686, INRIA (1999)

  19. Vicini, A., Quagliarella, D.: Inverse and direct airfoil design using a multiobjective genetic algorithm. AIAA J. 35(9), 1499–1505 (1997)

    Article  MATH  Google Scholar 

  20. Tang, Z., Désidéri, J.A., Périaux, J.: Multicriterion aerodynamic shape design optimization and inverse problems using control theory and Nash games. J. Optim. Theory Appl. 135(3), 599–622 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Zingg, D.W., Nemec, M., Pulliam, T.H.: A comparative evaluation of genetic and gradient-based algorithms applied to aerodynamic optimization. Eur. J. Comput. Mech. Rev. Eur. Méc. Numér. 17(1–2), 103–126 (2008)

    MATH  Google Scholar 

  22. Kenway, G.K.W., Martins, J.R.R.A.: Multipoint high-fidelity aerostructural optimization of a transport aircraft configuration. J. Aircr. 51(1), 144–160 (2014)

  23. Gallard, F., Meaux, M., Montagnac, M., Mohammadi, B.: Aerodynamic aircraft design for mission performance by multipoint optimization. In: 21st AIAA Computational Fluid Dynamics Conference, San Diego, USA (2013)

  24. Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim. 26(6), 369–395 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Giannessi, F., Mastroeni, G., Pellegrini, L.: On the theory of vector optimization and variational inequalities. image space analysis and separation. In: Giannessi, F. (ed.) Vector Variational Inequalities and Vector Equilibria. Nonconvex Optimization and its Applications, vol. 38, pp. 153–215. Kluwer, Dordrecht (2000)

    Chapter  Google Scholar 

  26. Zadeh, L.: Optimality and non-scalar-valued performance criteria. IEEE Trans. Autom. Control 8(1), 59–60 (1963)

    Article  Google Scholar 

  27. Das, I., Dennis, J.E.: A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems. Struct. Multidiscip. Optim. 14, 63–69 (1997)

    Article  Google Scholar 

  28. Lyu, Z., Kenway, G.K., Martins, J.: RANS-based aerodynamic shape optimization investigations of the common research model wing. In: AIAA Science and Technology Forum and Exposition (SciTech), National Harbor, MD (2014)

  29. Carrier, G.: Single and multi-point aerodynamic optimizations of a supersonic transport aircraft wing using optimization strategies involving adjoint method and genetic algorithm. In: Proceedings of ERCOFTAC Workshop “Design optimization: methods and applications”, Las Palmas (2006)

  30. Kosambi, D.: Statistics in function space. JIMS 7, 76–88 (1943)

    MATH  MathSciNet  Google Scholar 

  31. My-Ha, D., Lim, K., Khoo, B., Willcox, K.: Real-time optimization using proper orthogonal decomposition: free surface shape prediction due to underwater bubble dynamics. Comput. Fluids 36(3), 499–512 (2007)

    Article  MATH  Google Scholar 

  32. Thanh, B.T., Damodaran, M., Willcox, K.: Proper orthogonal decomposition extensions for parametric applications in transonic aerodynamics (AIAA Paper 2003–4213). In: Proceedings of the 15th AIAA Computational Fluid Dynamics Conference (2003)

  33. Braconnier, T., Ferrier, M., Jouhaud, J.C., Montagnac, M., Sagaut, P.: Towards an adaptive POD/SVD surrogate model for aeronautic design. Comput. Fluids 40, 195–209 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  34. Désidéri, J.A.: Multiple-gradient descent algorithm (MGDA) for multiobjective optimization. C. R. Math. 350(56), 313–318 (2012)

    Article  MATH  Google Scholar 

  35. Prandtl, L.: Theory of lifting surfaces. Tech. rep, NACA (1920)

  36. Kraft, D.D.: A software package for sequential quadratic programming. Tech. Rep. DFVLR-FB 88–28, DLR German Aerospace Center, Institute for Flight Mechanics, Koln, Germany (1988)

  37. McKay, M.D., Beckman, R.J., Conover, W.J.: Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2), 239–245 (1979)

    MATH  MathSciNet  Google Scholar 

  38. Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis of computer experiments. Stat. Sci. 4(4), 409–423 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  39. Zhu, C., Byrd, R.H., Lu, P., Nocedal, J.: Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization. ACM Trans. Math. Softw. 23(4), 550–560 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Xavier Pinel for his mathematical feedbacks. Joël Brézillon and the reviewers are greatly acknowledged for their valuable remarks. This work was founded by Airbus and the Association Nationale de la Recherche et de la Technologie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Gallard.

Additional information

Communicated by Emmanuel Trélat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallard, F., Mohammadi, B., Montagnac, M. et al. An Adaptive Multipoint Formulation for Robust Parametric Optimization. J Optim Theory Appl 167, 693–715 (2015). https://doi.org/10.1007/s10957-014-0595-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-014-0595-6

Keywords

Mathematica Subject Classification

Navigation