Skip to main content
Log in

The Proximal Point Algorithm Revisited

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we consider the proximal point algorithm for the problem of finding zeros of any given maximal monotone operator in an infinite-dimensional Hilbert space. For the usual distance between the origin and the operator’s value at each iterate, we put forth a new idea to achieve a new result on the speed at which the distance sequence tends to zero globally, provided that the problem’s solution set is nonempty and the sequence of squares of the regularization parameters is nonsummable. We show that it is comparable to a classical result of Brézis and Lions in general and becomes better whenever the proximal point algorithm does converge strongly. Furthermore, we also reveal its similarity to Güler’s classical results in the context of convex minimization in the sense of strictly convex quadratic functions, and we discuss an application to an ϵ-approximation solution of the problem above.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martinet, B.: Regularisation d’inéquations variationelles par approximations successives. Rev. Fr. Inform. Rech. Oper. 4, 154–158 (1970)

    MATH  MathSciNet  Google Scholar 

  2. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  3. Brézis, H., Lions, P.L.: Produits infinis de resolvantes. Isr. J. Math. 29, 329–345 (1978)

    Article  MATH  Google Scholar 

  4. Güler, O.: On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim. 29, 403–419 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  5. Zaslavski, A.J.: Proximal point algorithm for finding a common zero of a finite family of maximal monotone operators in the presence of computational errors. Nonlinear Anal. 75(16), 6071–6087 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Minty, G.J.: Monotone (nonlinear) operators in Hilbert space. Duke Math. J. 29, 341–346 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  7. Aubin, J.P., Ekeland, I.: Applied Nonlinear Analysis, Interscience Publications. Wiley, New York (1984)

    Google Scholar 

  8. Moreau, J.J.: Proximité et dualité dans un espace Hilbertien. Bull. Soc. Math. Fr. 93, 273–299 (1965)

    MATH  MathSciNet  Google Scholar 

  9. Zaslavski, A.J.: Maximal monotone operators and the proximal point algorithm in the presence of computational errors. J. Optim. Theory Appl. 150, 20–32 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Luque, F.J.: Asymptotic convergence analysis of the proximal point algorithm. SIAM J. Control Optim. 22, 277–293 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  11. Pennanen, T.: Local convergence of the proximal point algorithm and multiplier methods without monotonicity. Math. Oper. Res. 27, 193–202 (2002)

    Article  MathSciNet  Google Scholar 

  12. Dong, Y.D.: A new relative error criterion for the proximal point algorithm. Nonlinear Anal. 64, 2143–2148 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hardy, G.H.: Divergent Series. Clarendon Press, Oxford (1949)

    MATH  Google Scholar 

  14. Nemirovski, A., Onn, S., Rothblum, U.: Accuracy certificates for computational problems with convex structure. Math. Oper. Res. 35(11), 52–78 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964–979 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lawrence, J., Spingarn, J.E.: On fixed points of non-expansive piecewise isometric mappings. Proc. Lond. Math. Soc. 55, 605–624 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  17. Eckstein, J., Bertsekas, D.P.: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55(3), 293–318 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  18. Combettes, P.L.: Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization 53, 475–504 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Dong, Y.D., Fischer, A.: A family of operator splitting methods revisited. Nonlinear Anal. 72, 4307–4315 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is very grateful to the associated editor and the referees for their valuable suggestions and helpful comments which improve the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunda Dong.

Additional information

Communicated by Qamrul Hasan Ansari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, Y. The Proximal Point Algorithm Revisited. J Optim Theory Appl 161, 478–489 (2014). https://doi.org/10.1007/s10957-013-0351-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-013-0351-3

Keywords

Navigation