Skip to main content
Log in

Zero Duality Gap for Convex Programs: A Generalization of the Clark–Duffin Theorem

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This article uses classical notions of convex analysis over Euclidean spaces, like Gale & Klee’s boundary rays and asymptotes of a convex set, or the inner aperture directions defined by Larman and Brøndsted for the same class of sets, to provide a generalization of the Clark–Duffin Theorem.

On this ground, we are able to characterize objective functions and, respectively, feasible sets for which the duality gap is always zero, regardless of the value of the constraints and, respectively, of the objective function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The naive proof of the Clark–Duffin Theorem comes from a reviewer report to a previous version of this paper.

References

  1. Jeyakumar, V., Wolkowicz, H.: Zero duality gaps in infinite-dimensional programming. J. Optim. Theory Appl. 67, 87–107 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Fan, K., Glicksberg, I., Hoffman, A.J.: Systems of inequalities involving convex functions. Proc. Am. Math. Soc. 8, 617–622 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  3. Champion, T.: Duality gap in convex programming. Math. Program. 99, 487–498 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ban, L., Song, W.: Duality gap of the conic convex constrained optimization problems in normed spaces. Math. Program. 119, 195–214 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ernst, E., Volle, M.: Generalized Courant–Beltrami penalty functions and zero duality gap for conic convex programs. Positivity 17 (2013)

  6. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1968)

    Google Scholar 

  7. Duffin, R.J.: Clark’s theorem on linear programs holds for convex programs. Proc. Natl. Acad. Sci. USA 75, 1624–1626 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  8. Karney, D.: Clark’s theorem for semi-infinite convex programs. Adv. Appl. Math. 2, 7–12 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  9. Auslender, A., Teboulle, M.: Asymptotic Cones and Functions in Optimization and Variational Inequalities. Springer, New York (2003)

    MATH  Google Scholar 

  10. Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, Singapore (2002)

    Book  MATH  Google Scholar 

  11. Borwein, J., Lewis, A.: Convex Analysis and Nonlinear Optimization: Theory and Examples. Springer, New York (2006)

    Book  Google Scholar 

  12. Gale, V., Klee, V.: Continuous convex sets. Math. Scand. 7, 379–391 (1959)

    MathSciNet  Google Scholar 

  13. Larman, D.G.: On the inner aperture and intersections of convex sets. Pac. J. Math. 55, 219–232 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  14. Brøndsted, A.: The inner aperture of a convex set. Pac. J. Math. 72, 335–340 (1977)

    Article  Google Scholar 

  15. Bair, J.: A geometric description of the inner aperture of a convex set. Acta Math. Hung. 38, 237–240 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ernst, E., Théra, M., Zălinescu, C.: Slice-continuous sets in reflexive Banach spaces: convex constrained optimization and strict convex separation. J. Funct. Anal. 223, 179–203 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Coutat, P., Volle, M., Martínez-Legaz, J.-E.: Convex functions with continuous epigraph or continuous level sets. J. Optim. Theory Appl. 88, 365–379 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Auslender, A., Coutat, P.: Closed convex sets without boundary rays and asymptotes. Set-Valued Anal. 2, 19–33 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the two anonymous referees for their helpful comments and suggestions which have been included in the final version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emil Ernst.

Additional information

Communicated by Jean-Pierre Crouzeix.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ernst, E., Volle, M. Zero Duality Gap for Convex Programs: A Generalization of the Clark–Duffin Theorem. J Optim Theory Appl 158, 668–686 (2013). https://doi.org/10.1007/s10957-013-0287-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-013-0287-7

Keywords

Navigation