Skip to main content
Log in

BGK and Fokker-Planck Models of the Boltzmann Equation for Gases with Discrete Levels of Vibrational Energy

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We propose two models of the Boltzmann equation (BGK and Fokker-Planck models) for rarefied flows of diatomic gases in vibrational non-equilibrium. These models take into account the discrete repartition of vibration energy modes, which is required for high temperature flows, like for atmospheric re-entry problems. We prove that these models satisfy conservation and entropy properties (H-theorem), and we derive their corresponding compressible Navier–Stokes asymptotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bird, G.A.: Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford Engineering Science Series. Oxford University Press, Oxford (2003)

    Google Scholar 

  2. Schwartzentruber, Thomas E., Boyd, Iain D.: Nonequilibrium Gas Dynamics and Molecular Simulation. Cambridge Aerospace Series. Cambridge University Press, Cambridge (2017)

    MATH  Google Scholar 

  3. Dimarco, G., Pareschi, L.: Numerical methods for kinetic equations. Acta Numer. 23, 369–520 (2014)

    Article  MathSciNet  Google Scholar 

  4. Mieussens, Luc: A survey of deterministic solvers for rarefied flows (invited). AIP Conf. Proc. 1628(1), 943–951 (2014)

    Article  ADS  Google Scholar 

  5. Gross, E.P., Bhatnagar, P.L., Krook, M.: A model for collision processes in gases. Phys. Rev. 94(3), 511–525 (1954)

    Article  ADS  Google Scholar 

  6. Chu, C.K.: Kinetic-theoretic description of the formation of a shock wave. Phys. Fluids 8(1), 12 (1965)

    Article  ADS  Google Scholar 

  7. Struchtrup, H.: Macroscopic Transport Equations for Rarefied Gas Flows Approximation Methods in Kinetic Theory. Interaction of Mechanics and Mathematics. Springer, Heidelberg (2005)

    Book  Google Scholar 

  8. Cercignani, C.: The Boltzmann Equation and Its Applications. Lectures Series in Mathematics, vol. 68. Springer, New York (1988)

    Book  Google Scholar 

  9. Gorji, M.H., Torrilhon, M., Jenny, Patrick: Fokker-Planck model for computational studies of monatomic rarefied gas flows. J. Fluid Mech. 680, 574–601 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  10. Holway Jr., Lowell H.: New statistical models for kinetic theory: methods of construction. Phys. Fluids 9(9), 1658–1673 (1966)

    Article  ADS  Google Scholar 

  11. Andries, P., Le Tallec, P., Perlat, J.-P., Perthame, B.: The Gaussian-BGK model of Boltzmann equation with small Prandtl number. Eur. J. Mech. B 19(6), 813–830 (2000)

    Article  MathSciNet  Google Scholar 

  12. Shakhov, E.M.: Generalization of the Krook relaxation kinetic equation. Izv. Akad. Nauk SSSR. Mekh. Zhidk. Gaza 1(5), 142–145 (1968)

    Google Scholar 

  13. Gorji, M Hossein, Jenny, Patrick: A Fokker-Planck based kinetic model for diatomic rarefied gas flows. Phys. Fluids 25(6), 062002 (2013)

    Article  ADS  Google Scholar 

  14. Mathiaud, J., Mieussens, L.: A Fokker-Planck model of the Boltzmann equation with correct Prandtl number. J. Stat. Phys. 162(2), 397–414 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  15. Mathiaud, J., Mieussens, L.: A Fokker-Planck model of the Boltzmann equation with correct Prandtl number for polyatomic gases. J. Stat. Phys. 168(5), 1031–1055 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  16. Rahimi, Behnam, Struchtrup, Henning: Capturing non-equilibrium phenomena in rarefied polyatomic gases: a high-order macroscopic model. Phys. Fluids 26(5), 052001 (2014)

    Article  ADS  Google Scholar 

  17. Wang, Zhao, Yan, Hong, Li, Qibing, Kun, Xu: Unified gas-kinetic scheme for diatomic molecular flow with translational, rotational, and vibrational modes. J. Comput. Phys. 350, 237–259 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  18. Arima, Takashi, Ruggeri, Tommaso, Sugiyama, Masaru: Rational extended thermodynamics of a rarefied polyatomic gas with molecular relaxation processes. Phys. Rev. E 96, 042143 (2017)

    Article  ADS  Google Scholar 

  19. Kosuge, S., Kuo, H.-W., Aoki, K.: A kinetic model for a polyatomic gas with temperature-dependent specific heats and its application to shock-wave structure. submitted, (2019)

  20. Anderson, J.D.: Hypersonic and High-Temperature Gas Dynamics, 2nd edn. American Institute of Aeronautics and Astronautics, Reston (2006)

    Book  Google Scholar 

  21. Morse, T.F.: Kinetic model for gases with internal degrees of freedom. Phys. Fluids 7(2), 159–169 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  22. Huang, A.B., Hartley, D.L.: Nonlinear rarefied couette flow with heat transfer. Phys. Fluids 11(6), 1321 (1968)

    Article  ADS  Google Scholar 

  23. Baranger, C., Marois, G., Mathé, J., Mathiaud, J., Mieussens, L.: A BGK model for high temperature rarefied gas flows. Eur. J. Mech. B 80, 1–2 (2018)

    Article  MathSciNet  Google Scholar 

  24. Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-uniform Gases. Cambridge University Press, Cambridge (1970)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Mathiaud.

Additional information

Communicated by Eric A. Carlen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Gaussian Integrals and Other Summation Formulas

Gaussian Integrals and Other Summation Formulas

In this section, we give some integrals and summation formula that are used in the paper.

First, we remind the definition of the absolute Maxwellian \(M_0(V) = \frac{1}{(2\pi )^{\frac{3}{2}}}\exp (-\frac{|V|^2}{2})\). We denote by \(\langle \phi \rangle = \int _{{\mathbb {R}}^3}\phi (V)\, dV\) for any function \(\phi \). It is standard to derive the following integral relations (see [24], for instance), written with the Einstein notation:

$$\begin{aligned}&\langle M_0 \rangle _V = 1, \\&\langle V_iV_jM_0 \rangle _V = \delta _{ij}, \qquad \langle V_i^2M_0 \rangle _V = 1, \qquad \langle |V|^2M_0 \rangle _V = 3, \\&\langle V_iV_jV_kV_lM_0 \rangle _V = \delta _{ij}\delta _{kl} + \delta _{ik}\delta _{jl} + \delta _{il}\delta _{jk} , \qquad \langle V_i^2V_j^2M_0 \rangle _V = 1 + 2\, \delta _{ij} \\&\langle V_iV_j|V|^2M_0 \rangle _V = 5 \,\delta _{ij}, \qquad \langle |V|^4M_0 \rangle _V = 15, \\&\langle V_iV_j|V|^4M_0 \rangle _V = 35 \,\delta _{ij}, \qquad \langle |V|^6M_0 \rangle = 105, \end{aligned}$$

while all the integrals of odd power of V are zero. Note that the first relation of each line implies the other relations of the same line: these relations are given here to improve the readability of the paper. From the previous Gaussian integrals, it can be shown that for any \(3\times 3\) matrix C, we have

$$\begin{aligned} \langle V_iV_jC_{kl}V_kV_lM_0 \rangle _V = C_{ij} + C_{ji} + C_{ii}\delta _{ij}. \end{aligned}$$

Finally, we have also used the following relations:

$$\begin{aligned} \int _{0}^{+\infty } J e^{-J} \, dJ = \int _{0}^{+\infty } e^{-J} \, dJ = 1, \end{aligned}$$

and also

$$\begin{aligned} \sum _{i=0}^{+\infty } e^{-iT_0/T} = \frac{1}{1-e^{-T_0/T}} \quad \text { and } \quad \sum _{i=0}^{+\infty } i e^{-iT_0/T} = \frac{e^{-T_0/T}}{(1-e^{-T_0/T})^2}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathiaud, J., Mieussens, L. BGK and Fokker-Planck Models of the Boltzmann Equation for Gases with Discrete Levels of Vibrational Energy. J Stat Phys 178, 1076–1095 (2020). https://doi.org/10.1007/s10955-020-02490-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-020-02490-7

Keywords

Navigation