Skip to main content
Log in

From Ecology to Finance (and Back?): A Review on Entropy-Based Null Models for the Analysis of Bipartite Networks

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Bipartite networks provide an insightful representation of many systems, ranging from mutualistic networks of species interactions to investment networks in finance. The analyses of their topological structures have revealed the ubiquitous presence of properties which seem to characterize many—apparently different—systems. Nestedness, for example, has been observed in biological plant-pollinator as well as in country-product exportation networks. Due to the interdisciplinary character of complex networks, tools developed in one field, for example ecology, can greatly enrich other areas of research, such as economy and finance, and vice versa. With this in mind, we briefly review several entropy-based bipartite null models that have been recently proposed and discuss their application to real-world systems. The focus on these models is motivated by the fact that they show three very desirable features: analytical character, general applicability, and versatility. In this respect, entropy-based methods have been proven to perform satisfactorily both in providing benchmarks for testing evidence-based null hypotheses and in reconstructing unknown network configurations from partial information. Furthermore, entropy-based models have been successfully employed to analyze ecological as well as economic systems. As an example, the application of entropy-based null models has detected early-warning signals, both in economic and financial systems, of the 2007–2008 world crisis. Moreover, they have revealed a statistically-significant export specialization phenomenon of country export baskets in international trade, a result that seems to reconcile Ricardo’s hypothesis in classical economics with recent findings on the (empirical) diversification industrial production at the national level. Finally, these null models have shown that the information contained in the nestedness is already accounted for by the degree sequence of the corresponding graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. The Comtrade Database can be found at https://comtrade.un.org/.

  2. As we will appreciate better in the following, setting the threshold for the RCA values to 1 is quite natural. In fact, the RCA does nothing more than to compare the observed export values to their expectations provided by an approximated weighted configuration model, which is known as CAPM (capital asset pricing model) in the financial context, or “lift” in data science. Thus, the threshold RCA \(\ge 1\) means that an observed value is greater than its expectation.

  3. We thank the anonymous reviewer for suggesting this test.

References

  1. Allen, F., Gale, D.: Financial contagion. J. Polit. Econ. 108(1), 1–33 (2000). https://doi.org/10.1086/262109

    Article  Google Scholar 

  2. Allesina, S., Tang, S.: Stability criteria for complex ecosystems. Nature. 483(7388), 205–208 (2012). https://doi.org/10.1038/nature10832

    Article  ADS  Google Scholar 

  3. Almeida-Neto, M., Guimarães, P., Guimarães, P.R., Loyola, R.D., Ulrich, W.: A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117(8), 1227–1239 (2008). https://doi.org/10.1111/j.0030-1299.2008.16644.x

    Article  Google Scholar 

  4. Alon, U.: Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8(6), 450–461 (2007). https://doi.org/10.1038/nrg2102

    Article  Google Scholar 

  5. Angelini, O., Cristelli, M., Zaccaria, A., Pietronero, L.: The complex dynamics of products and its asymptotic properties. PLoS ONE 12(5), 1–20 (2017). https://doi.org/10.1371/journal.pone.0177360

    Article  Google Scholar 

  6. Annunziata, M.A., Petri, A., Pontuale, G., Zaccaria, A.: How log-normal is your country? An analysis of the statistical distribution of the exported volumes of products. Eur. Phys. J. Spec. Top. 1995(225), 1985–1995 (2016). https://doi.org/10.1140/epjst/e2015-50320-7

    Article  Google Scholar 

  7. Arinaminpathy, N., Kapadia, S., May, R.M.: Size and complexity in model financial systems. PNAS 109(45), 18338–18343 (2012). https://doi.org/10.1073/pnas.1213767109

    Article  ADS  Google Scholar 

  8. Atmar, W., Patterson, B.D.: The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia 96(3), 373–382 (1993). https://doi.org/10.1007/BF00317508

    Article  ADS  Google Scholar 

  9. Azaele, S., Suweis, S., Grilli, J., Volkov, I., Banavar, J.R., Maritan, A.: Statistical mechanics of ecological systems: neutral theory and beyond. Rev. Mod. Phys. (2016). https://doi.org/10.1103/RevModPhys.88.035003

  10. Baiser, B., Elhesha, R., Kahveci, T.: Motifs in the assembly of food web networks. Oikos 125(4), 480–491 (2016). https://doi.org/10.1111/oik.02532

    Article  Google Scholar 

  11. Balassa, B.: Trade liberalization and ’revealed’ comparative advantage. Manch. Sch. Econ. Soc. Stud. 33, 99–123 (1965)

    Article  Google Scholar 

  12. Barigozzi, M., Fagiolo, G., Garlaschelli, D.: Multinetwork of international trade: a commodity-specific analysis. Phys. Rev. E 81(4), 046,104 (2010). https://doi.org/10.1103/PhysRevE.81.046104

  13. Bastolla, U., Fortuna, Ma., Pascual-García, A., Ferrera, A., Luque, B., Bascompte, J.: The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458(7241), 1018–1020 (2009). https://doi.org/10.1038/nature07950

    Article  ADS  Google Scholar 

  14. Battiston, S., Farmer, J.D., Flache, A., Garlaschelli, D., Haldane, A., Heesterbeek, H., Hommes, C., Jaeger, C., May, R.M., Scheffer, M.: Complexity theory and financial regulation. Science 351(6275), 818–819 (2016). https://doi.org/10.1126/science.aad0299

    Article  ADS  Google Scholar 

  15. Battiston, S., Puliga, M., Kaushik, R., Tasca, P., Caldarelli, G.: DebtRank: too central to Fail? Financial networks, the FED and systemic risk. Sci. Rep. 2, 1–6 (2012). https://doi.org/10.1038/srep00541

    Article  Google Scholar 

  16. Bonanno, G., Caldarelli, G., Lillo, F., Mantegna, R.N.: Topology of correlation based minimal spanning trees in real and model markets. Phys. Rev. E 046130, 17–20 (2003). https://doi.org/10.1103/PhysRevE.68.046130

    Article  Google Scholar 

  17. Bonanno, G., Caldarelli, G., Lillo, F., Micciché, S., Vandewalle, N., Mantegna, R.N.: Networks of equities in financial markets. Eur. Phys. J. B 38(2), 363–371 (2004). https://doi.org/10.1140/epjb/e2004-00129-6

    Article  ADS  Google Scholar 

  18. Borge-Holthoefer, J., Baños, R.A., Gracia-lázaro, C., Moreno, Y.: Emergence of consensus as a modular-to-nested transition in communication dynamics. Sci. Rep. 7, 1–9 (2017). https://doi.org/10.1038/srep41673

    Article  Google Scholar 

  19. Brunnermeier, M.K.: Deciphering the liquidity and credit crunch 2007–2008. J. Econ. Perspect. 23(1), 77–100 (2009). https://doi.org/10.1257/jep.23.1.77

    Article  Google Scholar 

  20. Caccioli, F., Shrestha, M., Moore, C., Farmer, J.D.: Stability analysis of financial contagion due to overlapping portfolios. J. Bank. Financ. 46(Supplement C), 233–245 (2014). https://doi.org/10.1016/j.jbankfin.2014.05.021

    Article  Google Scholar 

  21. Cadot, O., Carrere, C., Strauss-Kahn, V.: Export diversification: what’s behind the hump? Rev. Econ. Stat. 93(2), 590–605 (2011). https://doi.org/10.1162/REST_a_00078

    Article  Google Scholar 

  22. Caldarelli, G., Cristelli, M., Gabrielli, A., Pietronero, L., Scala, A., Tacchella, A.: A network analysis of countries’ export flows: firm grounds for the building blocks of the economy. PLoS ONE 7(10), 1–17 (2012). https://doi.org/10.1371/journal.pone.0047278

    Article  Google Scholar 

  23. Cane, J.H., Minckley, R.L., Kervin, L.J., Roulston, T.H., Williams, N.M.: Complex responses within a desert bee guild (Hymenoptera: Apiformes) to urban habitat fragmentation. Ecol. Appl. 16(2), 632–644 (2006). https://doi.org/10.1890/1051-0761(2006)016[0632:CRWADB]2.0.CO;2

    Article  Google Scholar 

  24. Cerina, F., Riccaboni, M.: World input-output network world input-output network. PLoS ONE 10(7), 1–21 (2014). https://doi.org/10.1371/journal.pone.0134025

    Article  Google Scholar 

  25. Chan-Lau, J.A., Espinosa, M., Giesecke, K., Solé, J.A.: Assessing the systemic implications of financial linkages. IMF Glob. Financ. Stab. Rep. 2, 1–38 (2009). https://ssrn.com/abstract=1417920

  26. Chung, F., Lu, L.: Connected components in random graphs with given expected degree sequences. Ann. Comb. 6, 125–145 (2002). https://link.springer.com/content/pdf/10.1007/PL00012580.pdf

    Article  MathSciNet  Google Scholar 

  27. Connor, E.F., Simberloff, D.: The assembly of species communities: chance or competition? Ecology 60(6), 1132 (1979). https://doi.org/10.2307/1936961

    Article  Google Scholar 

  28. Cont, R., Wagalath, L.: Fire sales forensics: measuring endogenous risk. Math. Financ. 26(4), 835–866 (2016). https://doi.org/10.1111/mafi.12071

    Article  MathSciNet  MATH  Google Scholar 

  29. Cristelli, M., Gabrielli, A., Tacchella, A., Caldarelli, G., Pietronero, L.: Measuring the intangibles: a metrics for the economic complexity of countries and products. PLoS ONE 8(8), e70726 (2013). https://doi.org/10.1371/journal.pone.0070726

    Article  ADS  MATH  Google Scholar 

  30. Cristelli, M., Tacchella, A., Pietronero, L.: The heterogeneous dynamics of economic complexity. PLoS ONE 10(2), 1–15 (2015). https://doi.org/10.1371/journal.pone.0117174

    Article  Google Scholar 

  31. Di Gangi, D., Lillo, F., Pirino, D.: Assessing systemic risk due to fire sales spillover through maximum entropy network reconstruction. SSRN Electron. J. (2015). https://doi.org/10.2139/ssrn.2639178. https://ssrn.com/abstract=2639178

  32. Diamond, J.M.: Assembly of Species Communities. Belknap Press, Cambridge, MA (1975). https://doi.org/10.2307/1936961

    Book  Google Scholar 

  33. Diamond, J.M., Gilpin, M.E.: Examination of the null model of connor and simberloff for species co-occurrences on Islands. Oecologia 52(1), 64–74 (1982). https://doi.org/10.1007/BF00349013

    Article  ADS  Google Scholar 

  34. Donnelly, R., Marzluff, J.M.: Importance of reserve size and landscape context to urban bird conservation. Conserv. Biol. 18(3), 733–745 (2004). https://doi.org/10.1111/j.1523-1739.2004.00032.x

    Article  Google Scholar 

  35. Dormann, C.F., Fründ, J., Bluthgen, N., Gruber, B.: Indices, graphs and null models: analysing bipartite ecological networks. Open Ecol. J. 2, 7–24 (2009). https://doi.org/10.2174/1874213000902010007

    Article  Google Scholar 

  36. Dueñas, M., Fagiolo, G.: Modeling the International-Trade Network: a gravity approach. J. Econ. Interact. Coord. 8(1), 155–178 (2013). https://doi.org/10.1007/s11403-013-0108-y

    Article  Google Scholar 

  37. Eisenberg, L., Noe, T.H.: Systemic risk in financial systems. Manag. Sci. 47(2), 236–249 (2001)

    Article  Google Scholar 

  38. Elton, C.S.: Animal Ecology. Sidgwick and Jackson, London (1927)

    Google Scholar 

  39. Erdos, P., Rényi, A.: On random graphs I. Publ. Math. Debr. 6, 290–297 (1959)

    MATH  Google Scholar 

  40. Fagiolo, G., Reyes, J., Schiavo, S.: World-trade web: topological properties, dynamics, and evolution. Phys. Rev. E (2009). https://doi.org/10.1103/PhysRevE.79.036115

  41. Fahrig, L.: Relative effects of habitat loss and fragmentation on population extinction. J. Wildl. Manag. 61(3), 603–610 (1997). https://doi.org/10.2307/3802168

    Article  Google Scholar 

  42. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010). https://doi.org/10.1016/j.physrep.2009.11.002

    Article  ADS  MathSciNet  Google Scholar 

  43. Furceri, D., Mourougane, A.: The effect of financial crises on potential output: new empirical evidence from OECD countries. J. Macroecono. 34(3), 822–832 (2012). https://doi.org/10.1016/j.jmacro.2012.05.010

    Article  Google Scholar 

  44. Gai, P., Kapadia, S.: Contagion in financial networks. Proc. R. Soc. 466(2120), 2401–2423 (2010). https://doi.org/10.1257/jel.20151228

    Article  Google Scholar 

  45. Galeano, J., Fernandez, M., Hidalgo, C.: ipartite networks provide new insights on international trade markets. Am. Inst. Math. Sci. 7(3), 399–413 (2012)

    MATH  Google Scholar 

  46. Garlaschelli, D., Loffredo, M.I.: Fitness-dependent topological properties of the world trade web. Phys. Rev. Lett. 93, 188,701, (2004). https://doi.org/10.1103/PhysRevLett.93.188701

  47. Garlaschelli, D., Loffredo, M.I.: Maximum likelihood: extracting unbiased information from complex networks. Phys. Rev. E 78(1), 1–5 (2008). https://doi.org/10.1103/PhysRevE.78.015101

    Article  Google Scholar 

  48. Gilpin, M.E., Diamond, J.M.: Factors contributing to non-randomness in species Co-occurrences on Islands. Oecologia 52(1), 75–84 (1982). https://doi.org/10.1007/BF00349014

    Article  ADS  Google Scholar 

  49. Greenwood, R., Landier, A., Thesmar, D.: Vulnerable banks. J. Financ. Econ. 115(3), 471–485 (2015). https://doi.org/10.1016/j.jfineco.2014.11.006

    Article  Google Scholar 

  50. Gualdi, S., Cimini, G., Primicerio, K., di Clemente, R., Challet, D.: Statistically validated network of portfolio overlaps and systemic risk. Sci. Rep. 6, 39,467 (2016). https://doi.org/10.1038/srep39467

    Article  Google Scholar 

  51. Guimerà, R., Sales-Pardo, M., Amaral, L.A.N.: Module identification in bipartite and directed networks. Phys. Rev. E 76, 036,102 (2007). https://doi.org/10.1103/PhysRevE.76.036102

  52. Harte, J.: Maximum Entropy and Ecology: A Theory of Abundance, Distribution, and Energetics. Oxford University Press, Oxford (2011)

    Book  Google Scholar 

  53. Hausmann, R., Hidalgo, C.A.: The network structure of economic output. J. Econ. Growth 16(October), 309–342 (2011). https://doi.org/10.1007/s10887-011-9071-4

    Article  Google Scholar 

  54. Hidalgo, C.A., Hausmann, R.: The building blocks of economic complexity. Proc. Natl. Acad. Sci. USA. 106(26), 10570–10575 (2009). https://doi.org/10.1073/pnas.0900943106

    Article  ADS  Google Scholar 

  55. Hidalgo, C.A., Klinger, B., Barabasi, A.L., Hausmann, R.: The product space conditions the development of nations. Science (80-. ). 317(5837), 482–487 (2007). http://www.sciencemag.org/cgi/doi/10.1126/science.1144581

    Article  ADS  Google Scholar 

  56. Hong, Y.: On computing the distribution function for the poisson binomial distribution. Comput. Stat. Data Anal. 59(1), 41–51 (2013). https://doi.org/10.1016/j.csda.2012.10.006

    Article  MathSciNet  MATH  Google Scholar 

  57. James, A., Pitchford, J.W., Plank, M.J.: Disentangling nestedness from models of ecological complexity. Nature 487(7406), 227–230 (2012). https://doi.org/10.1038/nature11214

    Article  ADS  Google Scholar 

  58. Jaynes, E.: Information theory and statistical mechanics. Phys. Rev. 106, 620–630 (1957). https://doi.org/10.1103/PhysRev.106.620

    Article  ADS  MathSciNet  Google Scholar 

  59. Krause, A., Giansante, S.: Interbank lending and the spread of bank failures: a network model of systemic risk. J. Econ. Behav. Org. 83(3), 583–608 (2012). https://doi.org/10.1016/j.jebo.2012.05.015

    Article  Google Scholar 

  60. Levy-Carciente, S., Kenett, D.Y., Avakian, A., Stanley, H.E., Havlin, S.: Dynamical macroprudential stress testing using network theory. J. Bank. Financ. 59, 164–181 (2015). https://doi.org/10.1016/j.jbankfin.2015.05.008

    Article  Google Scholar 

  61. Lintner, J.: The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets. Rev. Econ. Stat. 47(1), 13–37 (1965)

    Article  Google Scholar 

  62. Mastrandrea, R., Squartini, T., Fagiolo, G., Garlaschelli, D.: Enhanced reconstruction of weighted networks from strengths and degrees. New J. Phys. (2014). https://doi.org/10.1088/1367-2630/16/4/043022

    Article  ADS  Google Scholar 

  63. McGill, B.J., Etienne, R.S., Gray, J.S., Alonso, D., Anderson, M.J., Benecha, H.K., Dornelas, M., Enquist, B.J., Green, J.L., He, F., Hurlbert, A.H., Magurran, A.E., Marquet, P.A., Maurer, B.A., Ostling, A., Soykan, C.U., Ugland, K.I., White, E.P.: Species abundance distributions: moving beyond single prediction theories to integrate within an ecological framework. Ecol. Lett. 10, 995–1015 (2007). https://doi.org/10.1111/j.1461-0248.2007.01094.x

    Article  Google Scholar 

  64. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Sci. Rep. 298(October), 11–14 (2002). www.sciencemag.org/cgi/content/full/298/5594/824/DC1

    Article  ADS  Google Scholar 

  65. Molloy, M., Reed, B.: The critical phase for random graphs with a given degree sequence. Random Struct. Algorithms. 6, 161–179 (1995). https://doi.org/10.1017/S096354830700867X

  66. Mossin, J.: Equilibrium in a capital asset market. Econometrica 34(4), 768–783 (1966)

    Article  Google Scholar 

  67. Munoz, M.A., Jonhson, S., Dominquez-Garcia, V.: Factors determining nestedness in complex networks. PLoS ONE 8(9), e74025 (2013). https://doi.org/10.1371/journal.pone.0074025

    Article  ADS  Google Scholar 

  68. Newman, M.E.J.: Scientific collaboration networks. ii. shortest paths, weighted networks, and centrality. Phys. Rev. E 64, 016,132 (2001). https://doi.org/10.1103/PhysRevE.64.016132

  69. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(22), 026,113 (2004). https://doi.org/10.1103/PhysRevE.69.026113

    Article  Google Scholar 

  70. O’Neill, J.: Who You Calling a BRIC? Bloomberg, New York (2013). https://www.bloomberg.com/view/articles/2013-11-12/who-you-calling-a-bric-. Accessed 05 Sep, 2017

  71. Park, J., Newman, M.E.J.: Statistical mechanics of networks. Phys. Rev. E 70(6), 66,117 (2004). https://doi.org/10.1103/PhysRevE.70.066117

    Article  MathSciNet  Google Scholar 

  72. Payrató Borrás, C., Hernández, L., Moreno, Y.: Breaking the spell of nestedness. ArXiv e-prints (2017). arXiv:1711.03134

  73. Pilosof, S., Porter, M.A., Pascual, M., Kéfi, S.: The multilayer nature of ecological networks. Nat. Ecol. Evol. 1(March), 1–9 (2017). https://doi.org/10.1038/s41559-017-0101

    Article  Google Scholar 

  74. Pugliese, E., Cimini, G., Patelli, A., Zaccaria, A., Pietronero, L., Gabrielli, A.: Unfolding the innovation system for the development of countries: co-evolution of Science, Technology and Production. ArXiv e-prints (2017). arXiv:1707.05146

  75. Pugliese, E., Zaccaria, A., Pietronero, L.: On the convergence of the Fitness-Complexity Algorithm. ArXiv e-prints (2014). arXiv:1410.0249

  76. Pugliese, E., Zaccaria, A., Pietronero, L.: On the convergence of the Fitness-Complexity Algorithm. Eur. Phys. J. Spec. Top. 225(10), 1893–1911 (2016). https://doi.org/10.1140/epjst/e2015-50118-1

    Article  Google Scholar 

  77. Ricardo, D.: On the Principles of Political Economy, and Taxation. John Murray, London (1817)

    Google Scholar 

  78. Roberts, A., Stone, L.: Island-sharing by archipelago species. Oecologia 83(4), 560–567 (1990). https://doi.org/10.1007/BF00317210

    Article  ADS  Google Scholar 

  79. Saavedra, S., Reed-Tsochas, F., Uzzi, B.: Common Organizing Mechanisms in Ecological and Socio-economic Networks. ArXiv e-prints (2011) arXiv:1110.0376

  80. Saracco, F., Di Clemente, R., Gabrielli, A., Squartini, T.: Randomizing bipartite networks: the case of the World Trade Web. Sci. Rep. 5, 10,595 (2015). http://www.nature.com/articles/srep10595

  81. Saracco, F., Di Clemente, R., Gabrielli, A., Squartini, T.: Detecting early signs of the 2007–2008 crisis in the world trade. Sci. Rep. 6, 30,286 (2016). https://doi.org/10.1038/srep30286

  82. Saracco, F., Straka, M.J., Di Clemente, R., Gabrielli, A., Caldarelli, G., Squartini, T.: Inferring monopartite projections of bipartite networks: an entropy-based approach. New J. Phys. 19(5), 053,022 (2016). https://doi.org/10.1088/1367-2630/aa6b38

    Article  Google Scholar 

  83. Serrano, M.A., Boguñá, M.: Topology of the world trade web. Phys. Rev. E 68, 015,101 (2003). https://doi.org/10.1103/PhysRevE.68.015101

  84. Shleifer, A., Vishny, R.W.: Fire sales in finance and macroeconomics. Working Paper 16642, National Bureau of Economic Research (2010). https://doi.org/10.3386/w16642

  85. Shoval, O., Alon, U.: SnapShot: network motifs. Cell 143(2), 326–326.e1 (2010). https://doi.org/10.1016/j.cell.2010.09.050

    Article  Google Scholar 

  86. Smith, A.: An Inquiry into the Nature and Causes of the Wealth of Nations. W. Strahan and T. Cadell, London (1776)

    Book  Google Scholar 

  87. Squartini, T., Almog, A., Caldarelli, G., van Lelyveld, I., Garlaschelli, D., Cimini, G.: Enhanced capital-asset pricing model for the reconstruction of bipartite financial networks. Phys. Rev. E 96, 032,315 (2017). https://doi.org/10.1103/PhysRevE.96.032315

  88. Staniczenko, P.P.A., Kopp, J.C., Allesina, S.: The ghost of nestedness in ecological networks. Nat. Commun. 4, 1391–1396 (2013). https://doi.org/10.1038/ncomms2422

    Article  ADS  Google Scholar 

  89. Stone, L., Roberts, A.: The checkerboard score and species distributions. Oecologia 85(1), 74–79 (1990). https://doi.org/10.1007/BF00317345

    Article  ADS  Google Scholar 

  90. Straka, M.J., Caldarelli, G., Saracco, F.: Grand canonical validation of the bipartite International Trade Network. Phys. Rev. E 96(022306), 1–12 (2017). https://doi.org/10.1103/PhysRevE.96.022306

    Article  Google Scholar 

  91. Suweis, S., Simini, F., Banavar, J.R., Maritan, A.: Emergence of structural and dynamical properties of ecological mutualistic networks. Nature 500(7463), 449–52 (2013). https://doi.org/10.1038/nature12438

    Article  ADS  Google Scholar 

  92. Tacchella, A., Cristelli, M., Caldarelli, G., Gabrielli, A., Pietronero, L.: A new metrics for countries’ fitness and products’ complexity. Sci. Rep. 2, 1–4 (2012). https://doi.org/10.1038/srep00723

    Article  MATH  Google Scholar 

  93. Thebault, E.: Identifying compartments in presence-absence matrices and bipartite networks: insights into modularity measures. J. Biogeogr. (2012). https://doi.org/10.1111/jbi.12015. http://wileyonlinelibrary.com/journal/jbi

    Article  Google Scholar 

  94. Thébault, E., Fontaine, C.: Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856 (2010). https://doi.org/10.1126/science.1188321

    Article  ADS  Google Scholar 

  95. Toonders, J.: Data is the new oil of the digital economy. WIRED (2014). https://www.wired.com/insights/2014/07/data-new-oil-digital-economy/. Accessed 10 Sep, 2017

  96. Williams, R.J.: Simple MaxEnt models explain food web degree distributions. Theor. Ecol. (2010). https://doi.org/10.1007/s12080-009-0052-6

    Article  Google Scholar 

  97. Williams, R.J.: Biology, methodology or chance? The degree distributions of bipartite ecological networks. PLoS ONE (2011). https://doi.org/10.1371/journal.pone.0017645

    Article  ADS  Google Scholar 

  98. Wong, E., Baur, B., Quader, S., Huang, C.H.: Biological network motif detection: principles and practice. Brief. Bioinform. 13(2), 202–215 (2012). https://doi.org/10.1093/bib/bbr033

    Article  Google Scholar 

  99. World Economic Forum: Building Resilience in Supply Chains. Tech. Rep. January (2013). http://www3.weforum.org/docs/WEF_RRN_MO_BuildingResilienceSupplyChains_Report_2013.pdf

  100. World Trade Organization: Trade in goods and services has fluctuated significantly over the last 20 years. Tech. rep. (2015). https://www.wto.org/english/res_e/statis_e/its2015_e/its15_highlights_e.pdf

  101. Zaccaria, A., Cristelli, M., Tacchella, A., Pietronero, L.: How the taxonomy of products drives the economic development of countries. PLoS ONE 9(12), 1–17 (2014). https://doi.org/10.1371/journal.pone.0113770

    Article  Google Scholar 

  102. Zhou, T., Ren, J., Medo, M., Zhang, Y.C.: Bipartite network projection and personal recommendation. Phys. Rev. E (2007). https://doi.org/10.1103/PhysRevE.76.046115

Download references

Acknowledgements

This work was supported by the EU Projects CoeGSS (Grant No. 676547), MULTIPLEX (Grant No. 317532), Openmaker (Grant No. 687941), SoBigData (Grant No. 654024), and the FET Projects SIMPOL (Grant No. 610704), DOLFINS (Grant No. 640772).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mika J. Straka.

Appendices

Appendix: Revealed Comparative Advantage

The revealed comparative advantage (RCA, also knows as Balassa index [11]), rescales the product export volumes in order to determine whether countries are relevant exporters of products. Be e(cp) the export value of product p in country c’s export basket. The RCA is calculated by comparing the monetary importance of p in c’s export basket to the global average,

$$\begin{aligned} \text {RCA}_{c, p} = \frac{e(c, p)}{\sum _{p'} e(c, p')} \big / \frac{\sum _{c'}e(c', p)}{\sum _{c', p'} e(c', p')} . \end{aligned}$$
(17)

A country is a relevant exporter if RCA \(\ge 1\). Using the RCA, the weighted country-product biadjacency matrix can be binarized by keeping only those matrix entries that identify relevant exports and setting them to 1.

Appendix: Bipartite Exponential Random Graph Model

We report some of the null models that have been obtained through entropy maximization and which have been applied to binary and weighted bipartite networks. In the following, all quantities marked with an asterisk refer to the real networks, expressed by their binary (\(\mathbf{M}^*\)) or weighted (\(\mathbf{W}^*\)) biadjacency matrix. The layer dimensions are \(N_L\) and \(N_\varGamma \).

1.1 Bipartite Random Graph

Constraining the expected number of links in the graph ensemble yields an extension of the Erdős-Rényi random graph to bipartite networks, the bipartite random graph (BiRG). The constraint \(C \equiv E = \sum _{i,\alpha }m_{i\alpha }\), and thus the Lagrange multiplier \(\theta \) as well, is scalar. The partition function can be calculated easily:

$$\begin{aligned} \mathcal {Z}_\text {BiRG}(\theta )= & {} \sum _{G_\text {B} \in \mathcal {G}_\text {B}}e^{-\theta E(G_\text {B})}\nonumber \\= & {} (1+e^{-\theta })^{N_L N_\varGamma }. \end{aligned}$$
(18)

The probability per graph reads

$$\begin{aligned} P(G_G|\theta )= & {} \dfrac{e^{-\theta E}}{(1+e^{-\theta })^{N_L N_\varGamma }}\nonumber \\= & {} \left( p_\text {BiRG}\right) ^E(1-p_\text {BiRG})^{N_L N_\varGamma -E}, \end{aligned}$$
(19)

where \(p_\text {BiRG} \equiv \dfrac{e^{-\theta }}{1+e^{-\theta }}\) is the probability of observing a bipartite link between any node couple \(i\in L\), \(\alpha \in \varGamma \). Notice that \(p_\text {BiRG}\) is uniform and independent of the links. Since Eq. (19) is a Binomial distribution, we see that the probability of observing a generic graph \(G_\text {B}\) in the ensemble reduces to the problem of observing \(E(G_\text {B})\) successful trials with the same probability \(p_\text {BiRG}\). We can obtain an analytical expression for the Lagrange multiplier \(\theta \) and thus for the link probability by maximizing the likelihood, which reads

$$\begin{aligned} \mathcal {L}=\ln P(G^*|\theta )=-\theta \, E^*- N_LN_\varGamma \ln (1+e^{-\theta }), \end{aligned}$$
(20)

and returns

$$\begin{aligned} p_\text {BiRG}=\frac{E^*}{N_L\,N_\varGamma }. \end{aligned}$$
(21)

1.2 Bipartite Partial Configuration Model

Without loss of generality, we constrain the degree sequence on the layer L such that \(\langle k_i\rangle =k_i^*,\,\forall i \in L\). For each node degree \(k_i\), we introduce one associated Lagrange multiplier, \(\theta _i\). This gives us the bipartite partial configuration model (BiPCM, [82]). Following the same procedure as in Eq. (18), we can obtain

$$\begin{aligned} \mathcal {Z}_\text {BiPCM}({\varvec{\theta }}) =\prod _{i,\alpha }1+e^{-\theta _i}. \end{aligned}$$
(22)

The probability per graph reads

$$\begin{aligned} P(G_B|{\varvec{\theta }})= & {} \prod _{i,\alpha } (p_\text {BiPCM})_i^{m_{i\alpha }} \big (1-(p_\text {BiPCM})_i\big )^{1-m_{i\alpha }}\nonumber \\= & {} \prod _{i}(p_\text {BiPCM})_i^{k_i} \big (1-(p_\text {BiPCM})_i\big )^{N_\varGamma - k_i}, \end{aligned}$$
(23)

where \((p_\text {BiPCM})_i=\frac{e^{-\theta _i}}{1+e^{-\theta _i}}\) is the probability of connecting the node i with any of the node of the opposite layer \(\varGamma \). The link probabilities are not uniform, but depend on the Lagrange multipliers of the nodes \(i\in L\). The factors in the product in Eq. (23) express the probabilities of observing exactly the constrained node degrees: the probability of the degree \(k_i\) of the node \(i \in L\) is given by the probability of observing \(k_i\) successes trials of a binomial distribution with probability \((p_\text {BiPCM})_i\). Maximizing the likelihood \(\mathcal {L}\) returns the explicit expressions for the link probabilities:

$$\begin{aligned} (p_\text {BiPCM})_i=\dfrac{k_i^*}{N_\varGamma }. \end{aligned}$$
(24)

1.3 Bipartite Configuration Model

In the monopartite configuration model, the degrees of all the nodes are constrained. Analogously, in the bipartite configuration model (BiCM, [80]) the degrees of the two layer degree sequences are constrained, such that \(\langle k_i\rangle = k_i^*,\,\forall i\in L\), and \(\langle k_\alpha \rangle =k_\alpha ^*,\,\forall \alpha \in \varGamma \). If \({\varvec{\theta }}\) and \({\varvec{\rho }}\) are the corresponding Lagrange multipliers, the partition function reads [80]

$$\begin{aligned} \mathcal {Z}_\text {BiCM}({\varvec{\theta }}, {\varvec{\rho }})=\prod _{i,\alpha }1+e^{-(\theta _i + \rho _\alpha )}, \end{aligned}$$
(25)

following essentially the same strategy used in Eq. (18). Again, the probability per graph factorizes in a product of probabilities per link:

$$\begin{aligned} P(G_B|{\varvec{\theta }}, {\varvec{\rho }})= & {} \prod _{i, \alpha } \dfrac{e^{-(\theta _i + \rho _\alpha ) m_{i\alpha }}}{1+e^{-(\theta _i+\rho _\alpha )}}\nonumber \\= & {} \prod _{i, \alpha } (p_\text {BiCM})_{i\alpha }^{m_{i\alpha }} \big (1-(p_\text {BiCM})_{i\alpha }\big )^{1-m_{i\alpha }}, \end{aligned}$$
(26)

where the probability per link reads

$$\begin{aligned} (p_\text {BiCM})_{i\alpha }=\frac{e^{-(\theta _i + \rho _\alpha )}}{1+e^{-(\theta _i+\rho _\alpha )}}, \quad i\in L, \alpha \in \varGamma \end{aligned}$$
(27)

Compared to the probability distributions of the BiRG and BiPCM, we can see that the BiCM distribution is more general and corresponds to the product of different Bernoulli events with link-specific success probabilities. Note that the distribution factorizes and link probabilities are independent. Maximizing the likelihood returns the equation system [80]

$$\begin{aligned} \left\{ \begin{array}{c} \sum _\alpha \dfrac{e^{-(\theta _i+\rho _\alpha )}}{1+e^{-(\theta _i + \rho _\alpha )}}=k_i^*,\quad \forall i\in L,\\ \\ \sum _i\dfrac{e^{-(\theta _i+\rho _\alpha )}}{1+e^{-(\theta _i+\rho _\alpha )}}=k_\alpha ^*,\quad \forall \alpha \in \varGamma . \end{array}\right. \end{aligned}$$
(28)

Solving this system allows us to evaluate the Lagrange multipliers and ultimately obtain the graph probabilities.

1.4 Bipartite Weighted Configuration Model

Constraining the node strengths as \(\langle s_i \rangle = s^*_i, \forall i\in L\), and \(\langle s_\alpha \rangle = s^*_\alpha , \forall \alpha \in \varGamma \), yields the bipartite weighted configuration model (BiWCM, [31]). Be \({\varvec{\theta }}\) and \({\varvec{\rho }}\) the corresponding Lagrange multipliers. As shown in [31], the partition function is

$$\begin{aligned} \mathcal {Z}_\text {BiCM}({\varvec{\theta }}, {\varvec{\rho }}) = \prod _{i,\alpha } \frac{1}{ 1 - e^{-(\theta _i +\rho _\alpha )}}. \end{aligned}$$
(29)

The graph probability yields

$$\begin{aligned} P(G_B|{\varvec{\theta }}, {\varvec{\rho }}) = \prod _{i, \alpha } \left( e^{-(\theta _i +\rho _\alpha )}\right) ^{w_{i\alpha }} (1 - e^{-(\theta _i +\rho _\alpha )}). \end{aligned}$$
(30)

Similar to the BiCM, the Lagrange multipliers can be obtained by solving an equation system, which reads [31]

$$\begin{aligned} \left\{ \begin{array}{c} \sum _\alpha \dfrac{e^{-(\theta _i + \rho _\alpha )}}{1 - e^{-(\theta _i +\rho _\alpha )}} = s_i^*,\quad \forall i\in L,\\ \\ \sum _i\dfrac{e^{-(\theta _i +\rho _\alpha )}}{1 - e^{-(\theta _i + \rho _\alpha )}} = s_\alpha ^*,\quad \forall \alpha \in \varGamma .\\ \end{array}\right. \end{aligned}$$
(31)

1.5 Bipartite Enhanced Configuration Model

The bipartite enhanced configuration model (BiECM, [31]) is a bipartite extension of the monopartite enhanced configuration model introduced in [62]. Both, degrees as well as strengths, are constrained.

Be \(\theta _i\) and \(\theta _\alpha \) the constraints associated to the degrees, and \(\rho _i\) and \(\rho _\alpha \) those associated to the strengths for the nodes \(i\in \text {L}\) and \(\alpha \in \varGamma \), respectively. Using the short-hand notation \(\phi _i = e^{-\rho _i}, \xi _\alpha = e^{-\rho _\alpha }, \psi _i = e^{-\theta _i}\) and \(\gamma _\alpha = e^{-\theta _\alpha }\), the partition function reads [31]

$$\begin{aligned} \mathcal {Z}_{BiECM}({\varvec{\theta }}, {\varvec{\rho }}) = \prod _{i, \alpha } \frac{1 - \phi _i \xi _\alpha ( 1 - \psi _i \gamma _\alpha )}{1 - \phi _i \xi _\alpha }. \end{aligned}$$
(32)

Consequently, the network probability is given by

$$\begin{aligned} P(G_B) = \prod _{i, \alpha } \frac{(1 - \phi _i \xi _\alpha ) (\phi _i\xi _\alpha )^{w_{i\alpha }} (\psi _i\gamma _\alpha )^{\varTheta (w_{i\alpha })}}{1- \phi _i \xi _\alpha (1 - \psi _i\gamma _\alpha )} \end{aligned}$$
(33)

and factorizes in single link probabilities. The values of the Lagrange multipliers can be obtained through a nonlinear system of equations, as shown in the Appendix of [31].

1.6 Maximum Entropy Capital Asset Pricing Model

The elements of the weighted biadjacency matrix can be rescaled to yield the quantities of the capital asset pricing model (CAPM, [61, 66]). In the financial context, the vertex strengths are often described as the total asset size of a bank (or market value of their portfolio), \(V_i = \sum _{\alpha } w_{i\alpha }\), and the market capitalization of an asset, \(C_\alpha = \sum _{i} w_{i\alpha }\) [31, 87]. In the CAPM, banks choose their portfolio weights proportional to their market value and the asset’s capitalization:

$$\begin{aligned} w^{CAPM}_{i\alpha } = \frac{V_i C_\alpha }{w}, \end{aligned}$$
(34)

where we have used \(w = \sum _{i', \alpha '} w_{i'\alpha '}\) The probability distribution for the MECAPM yields [31]

$$\begin{aligned} P(G_B) = \prod _{i, \alpha } \left[ 1 - \left( p_{CAPM}\right) _{i\alpha }\right] ^{w_{i\alpha }} \left( p_{CAPM}\right) _{i\alpha }, \end{aligned}$$
(35)

where the probability per link reads

$$\begin{aligned} \left( p_{CAPM}\right) _{i\alpha } = \frac{w^{CAPM}_{i\alpha }}{1 + w^{CAPM}_{i\alpha }}. \end{aligned}$$
(36)

Note that \(P(G_B)\) is geometrically distributed for \(w_{i\alpha } \in \mathbb {N}\) [31]. The link probabilities can be easily calculated using the identity in Eq. (34).

1.7 Enhanced Capital Asset Pricing Model

The so-called enhanced capital asset pricing model (ECAPM, [87]) reconstructs the link topology and subsequently the link weights. Their method makes only use of the strength sequence and is composed of two steps.

Firstly, the topology of the network is reconstructed by using the BiCM under the assumption that the exponential Lagrange multipliers \(x_i \equiv \text {e}^{-\theta _i}\) and \(y_\alpha \equiv \text {e}^{-\theta _\alpha }\) are proportional to node-specific fitness values, represented by their strengths:

$$\begin{aligned} x_i\equiv & {} \sqrt{z_\varGamma } s_i,\quad \forall i \in L\nonumber \\ y_\alpha\equiv & {} \sqrt{z_L} s_\alpha ,\quad \forall \alpha \in \varGamma . \end{aligned}$$
(37)

Constraining the network density with the total number of links \(\langle E\rangle \equiv E^*\), the parameter \(z = \sqrt{z_\varGamma z_L}\) can be estimated using [87]

$$\begin{aligned} \langle E \rangle = \sum _{i, \alpha } \frac{z V_i C_\alpha }{1 + z V_i C_\alpha },\quad \forall i \in L, \alpha \in \varGamma , \end{aligned}$$
(38)

Subsequently, the single link probabilities are simply given by the BiCM expression in Eq. (11), substituting the Lagrange multipliers with the expressions (37):

$$\begin{aligned} (p_{ECAPM})_{i\alpha } = \frac{z V_i C_\alpha }{1 + z V_i C_\alpha },\quad \forall i \in L, \alpha \in \varGamma , \end{aligned}$$
(39)

where z absorbs the proportionality constants.

Secondly, the link weights are reconstructed using the CAPM model while taking the network topology into consideration. Instead of setting \(w_{i\alpha } = V_i C_\alpha / w\), a correction factor is applied [87]

$$\begin{aligned} w_{i\alpha }= & {} m_{i\alpha } \frac{V_i C_\alpha }{w\ (p_{ECAPM})_{i\alpha }} \nonumber \\= & {} (V_i C_\alpha + z^{-1}) \frac{m_{i\alpha }}{w}, \end{aligned}$$
(40)

where \(m_{i\alpha }\) is 0 or 1,depending the link is present in the graph or not.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Straka, M.J., Caldarelli, G., Squartini, T. et al. From Ecology to Finance (and Back?): A Review on Entropy-Based Null Models for the Analysis of Bipartite Networks. J Stat Phys 173, 1252–1285 (2018). https://doi.org/10.1007/s10955-018-2039-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-018-2039-4

Keywords

Navigation