Skip to main content
Log in

On the Small Mass Limit of Quantum Brownian Motion with Inhomogeneous Damping and Diffusion

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the small mass limit (or: the Smoluchowski–Kramers limit) of a class of quantum Brownian motions with inhomogeneous damping and diffusion. For Ohmic bath spectral density with a Lorentz–Drude cutoff, we derive the Heisenberg–Langevin equations for the particle’s observables using a quantum stochastic calculus approach. We set the mass of the particle to equal \(m = m_{0} \epsilon \), the reduced Planck constant to equal \(\hbar = \epsilon \) and the cutoff frequency to equal \(\varLambda = E_{\varLambda }/\epsilon \), where \(m_0\) and \(E_{\varLambda }\) are positive constants, so that the particle’s de Broglie wavelength and the largest energy scale of the bath are fixed as \(\epsilon \rightarrow 0\). We study the limit as \(\epsilon \rightarrow 0\) of the rescaled model and derive a limiting equation for the (slow) particle’s position variable. We find that the limiting equation contains several drift correction terms, the quantum noise-induced drifts, including terms of purely quantum nature, with no classical counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Accardi, L., Lu, Y., Volovich, I.: Quantum Theory and Its Stochastic Limit. Physics and astronomy online library. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  2. Ankerhold, J.: Phase space dynamics of overdamped quantum systems. Europhys. Lett. 61(3), 301 (2003)

    Article  ADS  Google Scholar 

  3. Ankerhold, J., Pechukas, P., Grabert, H.: Strong friction limit in quantum mechanics: the quantum smoluchowski equation. Phys. Rev. Lett 87, 086802 (2001)

    Article  ADS  Google Scholar 

  4. Ankerhold, J., Grabert, H., Pechukas, P.: Quantum Brownian motion with large friction. Chaos: an Interdisciplinary. J. Nonlinear Sci. 15(2), 026106 (2005)

    MATH  Google Scholar 

  5. Attal, S., Joye, A.: The Langevin equation for a quantum heat bath. J. Funct. Anal. 247(2), 253–288 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Attal, S., Joye, A., Pillet, C.: Open Quantum Systems II: The Markovian Approach. Lecture Notes in Mathematics. Springer, Berlin (2006)

    MATH  Google Scholar 

  7. Azouit, R., Sarlette, A., Rouchon, P.: Adiabatic elimination for open quantum systems with effective Lindblad master equations. In: IEEE 55th Conference on Decision and Control (CDC), pp. 4559–4565 (2016)

  8. Barchielli, A., Vacchini, B.: Quantum Langevin equations for optomechanical systems. New J. Phys. 17(8), 083004 (2015)

    Article  ADS  Google Scholar 

  9. Barik, D., Ray, D.S.: Quantum state-dependent diffusion and multiplicative noise: a microscopic approach. J. Stat. Phys. 120, 339–365 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Belavkin, V., Hirota, O., Hudson, R.: The world of quantum noise and the fundamental output process. In: Quantum Communications and Measurement, pp. 3–19. Springer, Berlin (1995)

  11. Berglund, N., Gentz, B.: Noise-Induced Phenomena in Slow-Fast Dynamical Systems: A Sample-Paths Approach. Springer, Berlin (2006)

    MATH  Google Scholar 

  12. Bhatia, R., Rosenthal, P.: How and why to solve the operator equation ax \(-\) xb \(=\) y. Bull. Lond. Math. Soc. 29(1), 1–21 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bhattacharya, S., Chattopadhyay, S., Chaudhury, P., Chaudhuri, J.R.: Phase induced transport of a Brownian particle in a periodic potential in the presence of an external noise: a semiclassical treatment. J. Math. Phys. 52(7), 073302 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Biane, P.: Itôs stochastic calculus and Heisenberg commutation relations. Stoch. Process. Appl. 120(5), 698–720 (2010)

    Article  MATH  Google Scholar 

  15. Birrell, J., Hottovy, S., Volpe, G., Wehr, J.: Small mass limit of a Langevin equation on a manifold. In: Annales Henri Poincaré, vol. 18, pp. 707–755. Springer, Berlin (2017)

  16. Birrell, J., Wehr, J.: Homogenization of dissipative, noisy, Hamiltonian dynamics (2016). arXiv:1608.08194

  17. Birrell, J., Wehr, J.: Phase space homogenization of noisy Hamiltonian systems (2017). arXiv:1705.05004

  18. Bo, S., Celani, A.: Multiple-scale stochastic processes: decimation, averaging and beyond. Phys. Rep. 670, 1–59 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Bonart, J., Cugliandolo, L.F.: From nonequilibrium quantum Brownian motion to impurity dynamics in one-dimensional quantum liquids. Phys. Rev. A 86, 023636 (2012)

    Article  ADS  Google Scholar 

  20. Bonart, J., Cugliandolo, L.F.: Effective potential and polaronic mass shift in a trapped dynamical impurity Luttinger liquid system. Europhys. Lett. 101(1), 16003 (2013)

    Article  ADS  Google Scholar 

  21. Bouten, L., Silberfarb, A.: Adiabatic elimination in quantum stochastic models. Commun. Math. Phys. 283(2), 491–505 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Bouten, L., van Handel, R., James, M.R.: An introduction to quantum filtering. SIAM J. Control Optim. 46(6), 2199–2241 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Bouten, L., van Handel, R., Silberfarb, A.: Approximation and limit theorems for quantum stochastic models with unbounded coefficients. J. Funct. Anal. 254(12), 3123–3147 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Bouten, L., Gohm, R., Gough, J., Nurdin, H.: A Trotter-Kato theorem for quantum markov limits. EPJ Quantum Technol. 2(1), 1 (2015)

    Article  Google Scholar 

  25. Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. OUP, Oxford (2007)

    Book  MATH  Google Scholar 

  26. Büttiker, M.: Transport as a consequence of state-dependent diffusion. Z. Phys. B 68(2), 161–167 (1987)

    Article  ADS  Google Scholar 

  27. Caldeira, A.O.: An introduction to macroscopic quantum phenomena and quantum dissipation. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  28. Caldeira, A., Leggett, A.: Path integral approach to quantum Brownian motion. Physica A 121(3), 587–616 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Carlesso, M., Bassi, A.: Adjoint master equation for quantum Brownian motion. Phys. Rev. A 95(5), 052119 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  30. Černotík, O., Vasilyev, D.V., Hammerer, K.: Adiabatic elimination of Gaussian subsystems from quantum dynamics under continuous measurement. Phys. Rev. A 92(1), 012124 (2015)

    Article  ADS  Google Scholar 

  31. Coffey, W., Kalmykov, Y.P., Titov, S., Mulligan, B.: Semiclassical Klein-Kramers and Smoluchowski equations for the Brownian motion of a particle in an external potential. J. Phys. A 40(3), F91 (2006)

  32. Cohen-Tannoudji, C., Dupont-Roc, J., Grynberg, G.: Atom-Photon Interactions: Basic Processes and Applications. Wiley-Interscience Publication, Wiley (1992)

    Google Scholar 

  33. Csáki, E., Csörgő, M., Lin, Z., Révész, P.: On infinite series of independent Ornstein-Uhlenbeck processes. Stoch. Process. Appl. 39(1), 25–44 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  34. De Roeck, W., Fröhlich, J., Pizzo, A.: Quantum Brownian motion in a simple model system. Commun. Math. Phys. 293(2), 361–398 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. De Roeck, W., Fröhlich, J., Schnelli, K.: Quantum diffusion with drift and the Einstein relation. i. J. Math. Phys. 55(7), 075206 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Dereziński, J., Gérard, C.: Asymptotic completeness in quantum field theory. massive Pauli-Fierz hamiltonians. Rev. Math. Phys. 11(04), 383–450 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  37. Dereziński, J., Jakšić, V.: Spectral theory of Pauli-Fierz operators. J. Funct. Anal. 180(2), 243–327 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  38. Dereziński, J., De Roeck, W.: Extended weak coupling limit for Pauli-Fierz operators. Commun. Math. Phys. 279(1), 1–30 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Dhahri, A.: Markovian properties of the spin-boson model. Séminaire de Probabilités XLII 1979, 397 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Dillenschneider, R., Lutz, E.: Quantum Smoluchowski equation for driven systems. Phys. Rev. E 80(4), 042101 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  41. Efimkin, D.K., Hofmann, J., Galitski, V.: Non-Markovian quantum friction of bright solitons in superfluids. Phys. Rev. Lett. 116(22), 225301 (2016)

    Article  ADS  Google Scholar 

  42. Emzir, M.F., Woolley, M.J., Petersen, I.R.: On physical realizability of nonlinear quantum stochastic differential equations (2016). arXiv:1612.07877

  43. Fagnola, F.: Quantum Markov semigroups and quantum flows. Proyecciones 18(3), 1–144 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  44. Ferialdi, L.: Dissipation in open quantum systems (2017). arXiv preprint arXiv:1701.05024

  45. Ford, G.: OConnell, R.: Anomalous diffusion in quantum Brownian motion with colored noise. Phys. Rev. A 73(3), 032103 (2006)

    Article  ADS  Google Scholar 

  46. Gardiner, C., Zoller, P.: Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics. Springer Series in Synergetics. Springer, Berlin (2004)

    MATH  Google Scholar 

  47. Givon, D., Kupferman, R., Stuart, A.: Extracting macroscopic dynamics: model problems and algorithms. Nonlinearity 17(6), R55 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Glauber, R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131(6), 2766 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Gough, J.: Quantum flows as Markovian limit of emission, absorption and scattering interactions. Commun. Math. Phys. 254(2), 489–512 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Gough, J.: Zeno dynamics for open quantum systems. Russ. J. Math. Phys. 21(3), 337–347 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  51. Gough, J., van Handel, R.: Singular perturbation of quantum stochastic differential equations with coupling through an oscillator mode. J. Stat. Phys. 127(3), 575–607 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Gough, J., James, M.: Quantum feedback networks: Hamiltonian formulation. Commun. Math. Phys. 287(3), 1109–1132 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Gregoratti, M.: The Hamiltonian operator associated with some quantum stochastic evolutions. Commun. Math. Phys. 222(1), 181–200 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Haake, F.: Systematic adiabatic elimination for stochastic processes. Z. Phys. B 48(1), 31–35 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  55. Haake, F., Lewenstein, M.: Adiabatic drag and initial slip in random processes. Phys. Rev. A 28(6), 3606 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  56. Hänggi, P.: Generalized Langevin equations: a useful tool for the perplexed modeller of nonequilibrium fluctuations? In: Stochastic Dynamics, pp. 15–22. Springer, Berlin (1997)

  57. Haroche, S., Raimond, J.: Exploring the Quantum: Atoms, Cavities, and Photons. Oxford Graduate Texts. OUP, Oxford (2006)

    Book  MATH  Google Scholar 

  58. Herzog, D.P., Hottovy, S., Volpe, G.: The small-mass limit for Langevin dynamics with unbounded coefficients and positive friction. J. Stat. Phys. 163(3), 659–673 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Hottovy, S., Volpe, G., Wehr, J.: Noise-induced drift in stochastic differential equations with arbitrary friction and diffusion in the Smoluchowski-Kramers limit. J. Stat. Phys. 146, 762 (2012)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  60. Hottovy, S., McDaniel, A., Volpe, G., Wehr, J.: The Smoluchowski-Kramers limit of stochastic differential equations with arbitrary state-dependent friction. Commun. Math. Phys. 336(3), 1259–1283 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Hudson Robin, L.M.: The classical limit of reduced quantum stochastic evolutions. Ann. l’I.H.P. Phys. thorique 43(2), 133–145 (1985)

    MathSciNet  MATH  Google Scholar 

  62. Hudson, R.L., Parthasarathy, K.R.: Quantum Ito’s formula and stochastic evolutions. Commun. Math. Phys. 93(3), 301–323 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. Hughes, K.H.: Dynamics of open quantum systems. In: Collaborative Computational Project on Molecular Quantum Dynamics (CCP6) (2006)

  64. Ingold: Chapter 4: Dissipative Quantum Systems

  65. Jäck, B., Senkpiel, J., Etzkorn, M., Ankerhold, J., Ast, C.R., Kern, K.: Quantum Brownian motion at strong dissipation probed by superconducting tunnel junctions (2017). arXiv:1701.04084

  66. Jung, R., Ingold, G.L., Grabert, H.: Long-time tails in quantum Brownian motion. Phys. Rev. A 32(4), 2510 (1985)

    Article  ADS  Google Scholar 

  67. Kessler, E.M.: Generalized Schrieffer-Wolff formalism for dissipative systems. Phys. Rev. A 86(1), 012126 (2012)

    Article  ADS  Google Scholar 

  68. Kramers, H.: Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7(4), 284–304 (1940)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. Lampo, A., Lim, S.H., Ángel García-March, M., Lewenstein, M.: Bose polaron as an instance of quantum Brownian motion. Quantum 1, 30 (2017)

    Article  Google Scholar 

  70. Lampo, A., Lim, S.H., Wehr, J., Massignan, P., Lewenstein, M.: Lindblad model of quantum Brownian motion. Phys. Rev. A 94(4), 042123 (2016)

    Article  ADS  Google Scholar 

  71. Li, A.C., Petruccione, F., Koch, J.: Perturbative approach to Markovian open quantum systems. Sci. Rep. 4, 4887 (2014)

    Article  ADS  Google Scholar 

  72. Lim, S.H., Wehr, J.: Homogenization of a class of non-Markovian Langevin equations with an application to thermophoresis (2017). arXiv:1704.00134

  73. Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48(2), 119–130 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. Lindgren, G.: Lectures on stationary stochastic processes

  75. Łuczka, J., Rudnicki, R., Hänggi, P.: The diffusion in the quantum Smoluchowski equation. Physica A 351(1), 60–68 (2005)

    Article  ADS  Google Scholar 

  76. Maier, S.A., Ankerhold, J.: Quantum Smoluchowski equation: a systematic study. Phys. Rev. E 81, 021107 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  77. Massignan, P., Lampo, A., Wehr, J., Lewenstein, M.: Quantum Brownian motion with inhomogeneous damping and diffusion. Phys. Rev. A 91, 033627 (2015)

    Article  ADS  Google Scholar 

  78. Meyer, P.A.: Quantum Probability for Probabilists. Springer, Berlin (2006)

    MATH  Google Scholar 

  79. Nurdin, H.I., Yamamoto, N.: Linear Dynamical Quantum Systems. Springer, Berlin (2017)

    Book  MATH  Google Scholar 

  80. Parthasarathy, K.R., Usha Devi, A.R.: From quantum stochastic differential equations to Gisin-Percival state diffusion (2017). arXiv:1705.00520

  81. Parthasarathy, K.: An Introduction to Quantum Stochastic Calculus. Modern Birkhäuser Classics. Springer, Basel (2012)

    MATH  Google Scholar 

  82. Pauli, W., Fierz, M.: Zur Theorie der Emission langwelliger Lichtquanten. Il Nuovo Cimento (1924-1942) 15(3), 167–188 (1938)

    Article  MATH  Google Scholar 

  83. Pavliotis, G., Stuart, A.: Multiscale Methods, Texts in Applied Mathematics, vol. 53. Springer, New York (2008)

    Google Scholar 

  84. Pechukas, P., Ankerhold, J., Grabert, H.: Quantum Smoluchowski equation. Ann. Phys. 9(9–10), 794–803 (2000)

    Article  MATH  Google Scholar 

  85. Pechukas, P., Ankerhold, J., Grabert, H.: Quantum Smoluchowski equation ii: the overdamped harmonic oscillator. J. Phys. Chem. B 105(28), 6638–6641 (2001)

    Article  Google Scholar 

  86. Petersen, I.R.: Singular perturbation approximations for a class of linear complex quantum systems. In: IEEE American Control Conference (ACC), pp. 1898–1903 (2010)

  87. Reiter, F., Sørensen, A.S.: Effective operator formalism for open quantum systems. Phys. Rev. A 85(3), 032111 (2012)

    Article  ADS  Google Scholar 

  88. Rivas, Á., Huelga, S.F.: Open quantum systems. In: Springer Briefs in Physics (2012)

  89. Rivas, Á.: Refined weak-coupling limit: coherence, entanglement, and non-Markovianity. Phys. Rev. A 95(4), 042104 (2017)

    Article  ADS  Google Scholar 

  90. Rosenblum, M., et al.: On the operator equation \( bx-xa= q\). Duke Math. J. 23(2), 263–269 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  91. Sancho, J.M., Miguel, M.S., Dürr, D.: Adiabatic elimination for systems of Brownian particles with nonconstant damping coefficients. J. Stat. Phys. 28, 291 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  92. Schlosshauer, M.: Decoherence and the Quantum-To-Classical Transition. The Frontiers Collection. Springer, Berlin (2007)

    Google Scholar 

  93. Sinha, K.B., Goswami, D.: Quantum Stochastic Processes and Noncommutative Geometry, vol. 169. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  94. Smoluchowski, M.V.: Drei Vorträge über Diffusion, Brownsche Bewegung und Koagulation von Kolloidteilchen. Z. Phys. 17, 557–585 (1916)

    ADS  Google Scholar 

  95. Streater, R.F.: Classical and quantum probability. J. Math. Phys. 41(6), 3556–3603 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  96. Volpe, G., Wehr, J.: Effective drifts in dynamical systems with multiplicative noise: a review of recent progress. Rep. Prog. Phys. 79(5), 053901 (2016)

    Article  ADS  Google Scholar 

  97. Weiss, U.: Quantum Dissipative Systems. World Scientific, Singapore (2008)

    Book  MATH  Google Scholar 

  98. Xue, S., James, M.R., Shabani, A., Ugrinovskii, V., Petersen, I.R.: Quantum filter for a class of non-Markovian quantum systems. In: IEEE 54th Annual Conference on Decision and Control (CDC), pp. 7096–7100 (2015)

  99. Xue, S., Nguyen, T., James, M.R., Shabani, A., Ugrinovskii, V., Petersen, I.R.: Modelling and filtering for non-Markovian quantum systems (2017). arXiv preprint arXiv:1704.00986

Download references

Acknowledgements

S. Lim and J. Wehr were partially supported by NSF Grant DMS 1615045. This work has been funded by a scholarship from the Programa Másters d’Excel-léncia of the Fundació Catalunya-La Pedrera, ERC Advanced Grant OSYRIS (ERC-2013-AdG Grant 339106), EU IP SIQS (FP7-ICT-2011- 9600645), EU PRO QUIC (H2020-FETProAct-2014 641122), EU STREP EQuaM (FP7/2007-2013, No. 323714), Fundació Cellex, the Spanish MINECO (SEVERO OCHOA GRANT SEV-2015-0522, FISICATEAMO FIS2016-79508-P), and Generalitat de Catalunya (SGR 874 and CERCA/Program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon Hoe Lim.

Appendices

Appendices

1.1 A Derivation of Heisenberg Equations for Particle’s Observables

In this appendix we derive Eqs. (8)–(9). Let

$$\begin{aligned} b(\omega )= & {} \sqrt{\frac{\omega }{2\hbar }}\left( x(\omega )+\frac{i}{\omega }p(\omega ) \right) , \ \ \ \ b^{\dagger }(\omega ) = \sqrt{\frac{\omega }{2\hbar }}\left( x(\omega )-\frac{i}{\omega }p(\omega ) \right) , \end{aligned}$$
(123)
$$\begin{aligned}&[x(\omega ),p(\omega ')] = i\hbar \delta (\omega -\omega ')I, \end{aligned}$$
(124)

where we have normalized the masses of all bath oscillators.

The Heisenberg equation of motion gives

$$\begin{aligned} \dot{X}(t)&= \frac{i}{\hbar } [H, X(t)] = \frac{P(t)}{m}, \end{aligned}$$
(125)
$$\begin{aligned} \dot{P}(t)&= \frac{i}{\hbar } [H, P(t)] \nonumber \\&= -U'(X(t)) + f'(X(t)) \int _{\mathbb {R}^{+}} d\omega c(\omega ) \sqrt{\frac{2\omega }{\hbar }} x_{t}(\omega ) - 2f(X(t)) f'(X(t)) \int _{\mathbb {R}^{+}} r(\omega ) d\omega , \end{aligned}$$
(126)
$$\begin{aligned} \dot{x}_{t}(\omega )&= \frac{i}{\hbar } [H, x_{t}(\omega )] = p_{t}(\omega ), \ \ \omega \in \mathbb {R}^{+}, \end{aligned}$$
(127)
$$\begin{aligned} \dot{p}_{t}(\omega )&= \frac{i}{\hbar } [H, p_{t}(\omega )] = - \omega ^2 x_{t}(\omega ) + \sqrt{\frac{2\omega }{\hbar }} c(\omega ) f(X(t)), \ \ \omega \in \mathbb {R}^{+}, \end{aligned}$$
(128)

where \(r(\omega ) = |c(\omega )|^2/(\hbar \omega )\) and \(f'(X)= [f(X),P ]/(i\hbar )\).

Next we eliminate the bath degrees of freedom from the equations for X(t) and P(t). Solving for \(x_{t}(\omega )\), \(\omega \in \mathbb {R}^{+}\), gives:

$$\begin{aligned} x_{t}(\omega ) = \underbrace{x_{0}(\omega ) \cos (\omega t) + p_{0}(\omega ) \frac{\sin (\omega t)}{\omega }}_{x^{0}_{t}(\omega )} + \int _{0}^{t} \frac{\sin ( \omega (t-s))}{\omega } \sqrt{\frac{2\omega }{\hbar }} c(\omega ) f(X(s)) ds. \end{aligned}$$
(129)

Substituting this into the equation for P(t) results in:

$$\begin{aligned} \dot{P}(t)&= -U'(X(t)) + f'(X(t)) \int _{\mathbb {R}^{+}} d\omega c(\omega ) \sqrt{\frac{2\omega }{\hbar }} x^{0}_{t}(\omega ) \nonumber \\&\quad + \frac{2}{\hbar } f'(X(t)) \int _{\mathbb {R}^{+}} d\omega |c(\omega )|^2 \int _{0}^{t} ds \sin (\omega (t-s)) f(X(s))\nonumber \\&\quad - 2 f(X(t)) f'(X(t)) \int _{\mathbb {R}^{+}} d\omega r(\omega ). \end{aligned}$$
(130)

Using integration by parts, we obtain

$$\begin{aligned} \int _{0}^{t} ds \sin ( \omega (t-s)) f(X(s)) = \frac{f(X(t))}{\omega } - f(X)\frac{\cos (\omega t)}{\omega } - \int _{0}^{t} \frac{\cos (\omega (t-s))}{\omega } \frac{d}{ds}\left( f(X(s)) \right) ds \end{aligned}$$
(131)

and therefore,

$$\begin{aligned} \dot{P}(t)= & {} -U'(X(t)) + f'(X(t)) \underbrace{\int _{\mathbb {R}^{+}} d\omega c(\omega ) (b^{\dagger }_t(\omega ) + b_t(\omega ) ) }_{\zeta (t)} \nonumber \\&- f'(X(t)) \int _{0}^{t} ds \underbrace{\int _{\mathbb {R}^{+}} d\omega 2 r(\omega ) \cos (\omega (t-s))}_{\kappa (t-s)} \frac{d}{ds}\left( f(X(s)) \right) \nonumber \\&- f'(X(t)) f(X) \underbrace{\int _{\mathbb {R}^{+}} d\omega 2r(\omega ) \cos (\omega t)}_{\kappa (t)}, \end{aligned}$$
(132)

where

$$\begin{aligned} \frac{d}{ds}\left( f(X(s)) \right) = \frac{i}{\hbar }[H, f(X(s))] = \frac{\{ f'(X(s)), P(s)\}}{2 m}, \end{aligned}$$
(133)

\(b_t(\omega ) = b(\omega )e^{-i\omega t}\), \(b_t^{\dagger }(\omega ) = b^{\dagger }(\omega ) e^{i\omega t}\) and \(\{\cdot , \cdot \}\) denotes anti-commutator.

1.2 B Solving the Operator Lyapunov Equation

We outline the derivation of the solution, \(\varvec{\bar{J}}\), to the operator Lyapunov equation:

$$\begin{aligned} \varvec{\hat{\gamma }}(\bar{X}(s)) \varvec{\bar{J}} + \varvec{\bar{J}} \varvec{\hat{\gamma }}(\bar{X}(s))^{T} = \varvec{\sigma } \varvec{\sigma }^{T}, \end{aligned}$$
(134)

where \(\varvec{\hat{\gamma }}\) and \(\varvec{\sigma } \) are block operator matrices, defined in Sect. 6. First, we observe that upon taking transpose on both sides of the equation, we have \(\varvec{\hat{\gamma }}(\bar{X}(s)) \varvec{\bar{J}}^{T} + \varvec{\bar{J}}^{T} \varvec{\hat{\gamma }}(\bar{X}(s))^{T} = \varvec{\sigma } \varvec{\sigma }^{T}\), so uniqueness of the solution implies \(\varvec{\bar{J}} = \varvec{\bar{J}}^{T}\), i.e. \(J_{k,l} = J_{l,k}\) for all kl.

We write \(\varvec{\bar{J}}\) in the block-structure form:

$$\begin{aligned} \varvec{\bar{J}} = \left[ \begin{array}{cc} \varvec{J}_1 &{} \varvec{J}_2 \\ \varvec{J}_2^{T} &{} \varvec{J}_4 \end{array} \right] , \end{aligned}$$
(135)

where

$$\begin{aligned} \varvec{J}_1 = \left[ \begin{array}{cc} J_{1,1} &{} J_{1,2} \\ J_{1,2} &{} J_{2,2} \end{array} \right] , \ \ \ \varvec{J}_2 = \left[ \begin{array}{ccc} J_{1,3} &{} J_{1,4} &{} \cdots \\ J_{2,3} &{} J_{2,4} &{} \cdots \end{array} \right] \ \text { and } \ \varvec{J}_4 = \left[ \begin{array}{ccc} J_{3,3} &{} J_{3,4} &{} \cdots \\ J_{4,3} &{} J_{4,4} &{} \cdots \\ \vdots &{} \vdots &{} \ddots \end{array} \right] . \end{aligned}$$
(136)

Working out the matrix multiplications of the block operator matrices in the equation gives

$$\begin{aligned} \varvec{J}_4 = \frac{1}{2} \varvec{D}^{-1} \varvec{\varSigma }^2, \end{aligned}$$
(137)

which is a diagonal block operator matrix, and the following Sylvester-type equations:

$$\begin{aligned} \varvec{A} \varvec{J}_2 + \varvec{J}_2 \varvec{D}&= - \frac{1}{2} \varvec{B} \varvec{D}^{-1} \varvec{\varSigma }^2, \end{aligned}$$
(138)
$$\begin{aligned} \varvec{A} \varvec{J}_1 + \varvec{J}_1 \varvec{A}^{T}&= -\varvec{B} \varvec{J}_2^{T} - \varvec{J}_2 \varvec{B}^{T}. \end{aligned}$$
(139)

Equation (138) gives a system of linear equations for \(J_{1,n+3}\) and \(J_{2,n+3}\), for \(n=0,1,\ldots \):

$$\begin{aligned} \frac{f'}{m_0} J_{2,n+3} + a_n J_{1,n+3}&= \frac{f'}{2m_0} \frac{\varSigma _n^2}{a_n}, \end{aligned}$$
(140)
$$\begin{aligned} -a_0 f' J_{1,n+3} + (a_0 + a_n) J_{2,n+3}&= 0, \end{aligned}$$
(141)

which has the solution:

$$\begin{aligned} J_{2,n+3}&= \frac{\varSigma _n^2}{2m_0} \frac{a_0}{a_n^2(a_0+a_n)} \left[ I+\frac{a_0}{m_0 a_n(a_0+a_n)} (f')^2 \right] ^{-1} (f')^2, \end{aligned}$$
(142)
$$\begin{aligned} J_{1,n+3}&= \frac{\varSigma _n^2}{2m_0 a_n^2} \left[ I+\frac{a_0}{m_0 a_n(a_0+a_n)} (f')^2 \right] ^{-1} f', \end{aligned}$$
(143)

where we have used the fact that \(h(X)g(X) = g(X) h(X)\) for any functions g, h. Similarly, Eq. (139) gives:

$$\begin{aligned} J_{1,2}&= \sum _{n=0}^{\infty } J_{1,n+3}, \ \ \ J_{2,2} = \frac{1}{2} \left\{ f', \sum _{n=0}^{\infty } J_{1,n+3} \right\} , \end{aligned}$$
(144)
$$\begin{aligned} J_{1,1}&= \left( (f')^{-1} + \frac{1}{m_0 a_0} f'\right) \sum _{n=0}^{\infty } J_{1,n+3} - \frac{1}{m_0 a_0} \sum _{n=0}^{\infty } J_{2,n+3}. \end{aligned}$$
(145)

Substituting the expressions for \(J_{2,n+3}\) and \(J_{1,n+3}\) from (142) to (143) into the above equation gives the formula for \(J_{1,2}\), \(J_{2,2}\) and \(J_{1,1}\). In particular,

$$\begin{aligned} J_{1,1} = \sum _{n=0}^{\infty } \left\{ \frac{\varSigma _n^2}{2m_0 a_n^2} \left[ I+\frac{a_n}{m_0 a_0(a_0+a_n)} (f')^2 \right] \left[ I + \frac{a_0}{m_0 a_n(a_0+a_n)} (f')^2 \right] ^{-1} \right\} . \end{aligned}$$
(146)

We remark that upon taking the limit, the contributions involving the \(J_{1,2}\) and \(J_{1,3}\) cancel each other, as in the classical situation, and so the contributions coming from \(J_{1,n}\) (\(n \ge 4\)) are indeed correction drift terms induced by purely quantum noises.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, S.H., Wehr, J., Lampo, A. et al. On the Small Mass Limit of Quantum Brownian Motion with Inhomogeneous Damping and Diffusion. J Stat Phys 170, 351–377 (2018). https://doi.org/10.1007/s10955-017-1907-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-017-1907-7

Keywords

Navigation