Skip to main content
Log in

A Parameter Estimation Method Using Linear Response Statistics

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

This paper presents a new parameter estimation method for Itô diffusions such that the resulting model predicts the equilibrium statistics as well as the sensitivities of the underlying system to external disturbances. Our formulation does not require the knowledge of the underlying system, however, we assume that the linear response statistics can be computed via the fluctuation–dissipation theory. The main idea is to fit the model to a finite set of “essential” statistics that is sufficient to approximate the linear response operators. In a series of test problems, we will show the consistency of the proposed method in the sense that if we apply it to estimate the parameters of the underlying model, then we must obtain the true parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Anderson, D.F., Mattingly, J.C.: A weak trapezoidal method for a class of stochastic differential equations. Commun. Math. Sci. 9(1), 301–318 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. DelSole, T.: Can quasigeostrophic turbulence be modeled stochastically? J. Atmos. Sci. 53(11), 1617–1633 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  3. Evans, D.J., Morriss, G.P.: Statistical Mechanics of Nonequilibrium Liquids. Academic Press, London (2008)

    Book  MATH  Google Scholar 

  4. Gamerman, D., Lopes, H.F.: Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference, Second Edition. Chapman & Hall/CRC Texts in Statistical Science. Taylor & Francis, Oxford (2006)

  5. Gottwald, G.A., Wormell, J.P., Wouters, J.: On spurious detection of linear response and misuse of the fluctuation–dissipation theorem in finite time series. Physica D 331, 89–101 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  6. Hairer, M., Majda, A.J.: A simple framework to justify linear response theory. Nonlinearity 23(4), 909 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Kubo, R.: The fluctuation–dissipation theorem. Rep. Prog. Phys. 29(1), 255 (1966)

    Article  ADS  MATH  Google Scholar 

  8. Leith, C.E.: Climate response and fluctuation dissipation. J. Atmos. Sci. 32(10), 2022–2026 (1975)

    Article  ADS  Google Scholar 

  9. Majda, A., Wang, X.: Linear response theory for statistical ensembles in complex systems with time-periodic forcing. Commun. Math. Sci. 8(1), 145–172 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Majda, A.J.: Introduction to Turbulent Dynamical Systems in Complex Systems. Springer, New York (2016)

    Book  MATH  Google Scholar 

  11. Majda, A.J., Abramov, R.V., Grote, M.J.: Information Theory and Stochastics for Multiscale Nonlinear Systems. CRM Monograph Series, vol. 25. American Mathematical Society, Providence (2005)

  12. Majda, A.J., Gershgorin, B.: Improving model fidelity and sensitivity for complex systems through empirical information theory. Proc. Nat. Acad. Sci. 108(25), 10044–10049 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Majda, A.J., Gershgorin, B.: Link between statistical equilibrium fidelity and forecasting skill for complex systems with model error. Proc. Nat. Acad. Sci. 108(31), 12599–12604 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Majda, A.J., Qi, D.: Improving prediction skill of imperfect turbulent models through statistical response and information theory. J. Nonlinear Sci. 26(1), 233–285 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Majda, A.J., Qi, D.: Strategies for reduced-order models for predicting the statistical responses and uncertainty quantification in complex turbulent dynamical systems. submitted to SIAM Rev. (2016)

  16. Noid, W.G.: Perspective: coarse-grained models for biomolecular systems. J. Chem. Phys. 139(9), 090901 (2013)

    Article  ADS  Google Scholar 

  17. Pavliotis, G.A.: Stochastic Processes and Applications: Diffusion Processes, the Fokker–Planck and Langevin Equations. Texts in Applied Mathematics. Springer, New York (2014)

  18. Qi, D., Majda, A.J.: Low-dimensional reduced-order models for statistical response and uncertainty quantification: two-layer baroclinic turbulence. J. Atmos. Sci. 73(12), 4609–4639 (2016)

    Article  ADS  Google Scholar 

  19. Riniker, S., Allison, J.R., van Gunsteren, W.F.: On developing coarse-grained models for biomolecular simulation: a review. Phys. Chem. Chem. Phys. 14(36), 12423 (2012)

    Article  Google Scholar 

  20. Risken, H.: Fokker–Planck Equation. Springer, New York (1984)

    MATH  Google Scholar 

  21. Toda, M., Kubo, R., Hashitsume, N.: Statistical Physics II. Nonquilibrium Statistical Mechanics. Springer, New York (1983)

    MATH  Google Scholar 

Download references

Acknowledgements

The research of JH and XL was supported by the NSF Grant DMS-1619661. JH also acknowledges supports from DMS-1317919, ONR Grant N00014-16-1-2888 and ONR MURI Grant N00014-12-1-0912. XL also acknowledges support from NSF Grant DMS-1522617. HZ was partially supported as a GRA under the NSF Grant DMS-1317919.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He Zhang.

Appendices

Appendix 1: The Computation of \(M_2\) for the Simplified Turbulence Model

Here, we provide the computational detail for obtaining (27). In particular,

$$\begin{aligned} \hat{k}''_{x}(0)=\frac{1}{\sigma _{eq}^{2}}\int _{\mathbb {R}^{3}} \tilde{\mathcal {L}}(\tilde{B}(x,x)+\tilde{L}x-\tilde{\Lambda }x)x^{\top } \tilde{p}_{eq}(x)\text {d}x. \end{aligned}$$

where \(\tilde{B}(x,x)=(\tilde{B}_1x_2x_3,\tilde{B}_2x_1x_3,\tilde{B}_3 x_1x_2)\) and \(\tilde{L}\), \(\tilde{\Lambda }\) are \(3\times 3\) matrices. We introduce the following notations.

  1. 1.

    Set \(\tilde{D}(x)=\tilde{B}(x,x)+\tilde{L}x-\tilde{\Lambda }x\) which is the deterministic part of the system, and \(\tilde{D}_{i}\) denotes the ith component of \(\tilde{D}(x)\).

  2. 2.

    Set \(\tilde{C}=(\tilde{L}-\tilde{\Lambda })\), then we have \(\tilde{D}(x)=\tilde{B}(x,x)+\tilde{C}x\), and \(\tilde{C}_i\) denotes the ith row of the matrix, which is a row vector.

With these notations, we have the Jacobian matrix of \(\tilde{D}(x)\)

$$\begin{aligned} \nabla \tilde{D}(x)=\nabla \tilde{B}(x,x)+\nabla (\tilde{C}x)= \left( \begin{array}{lll} 0 &{}\quad \tilde{B}_1 x_3 &{}\quad \tilde{B}_1 x_2 \\ \tilde{B}_2 x_3 &{}\quad 0 &{}\quad \tilde{B}_2 x_1 \\ \tilde{B}_3 x_2 &{}\quad \tilde{B}_3 x_1 &{}\quad 0 \end{array} \right) +\tilde{C}, \end{aligned}$$

and the generator \(\tilde{\mathcal {L}}\) acting on f becomes,

$$\begin{aligned} \tilde{\mathcal {L}}f =\sum _{i=1}^{3}\tilde{D}_{i}\frac{\partial f}{\partial x_{i}}+\frac{\tilde{\sigma }^{2}}{2}\sum _{i,j=1}^{3} (\tilde{\Lambda })_{i,j}\frac{\partial ^{2}f}{\partial x_{i}\partial x_{j}}. \end{aligned}$$

In our case, \(f=\tilde{D}(x)\). Since \(\tilde{p}_{eq}\sim \mathcal {N}(0,\tilde{\sigma }_{eq}^{2})\), with \(\tilde{\sigma }_{eq}^{2}=\frac{\tilde{\sigma }^{2}}{2}\), only the odd power terms in \(\tilde{\mathcal {L}}\tilde{D}(x)\) contribute to \(M_2\). Notice that the second order partial derivatives of \(\tilde{D}(x)\) are constant, thus,

$$\begin{aligned} \hat{k}''_{x}(0)=\frac{1}{\sigma _{eq}^{2}}\int _{\mathbb {R}^{3}} (\tilde{\mathcal {L}}\tilde{D}(x))x^{\top }\tilde{p}_{eq}\text {d}x= \frac{1}{\sigma _{eq}^{2}}\int _{\mathbb {R}^{3}}\left( \sum _{i=1}^{3} \tilde{D}_{i}\frac{\partial \tilde{D}}{\partial x_{i}}\right) x^{\top }\tilde{p}_{eq}\text {d}x. \end{aligned}$$

For example, if \(i=1\),

$$\begin{aligned} \tilde{D}_{1}\frac{\partial \tilde{D}}{\partial x_1}&=(\tilde{B}_1x_2x_3+\tilde{C}_1 x)[(0,\tilde{B}_2x_3,\tilde{B}_3x_2)^{\top }+\tilde{C}_1^{\top }]\\&=(0,\tilde{B}_1\tilde{B}_2x_2x_3^2,\tilde{B}_1 \tilde{B}_3x_2^2x_3)^{\top }+\tilde{B}_1x_2x_3\tilde{C}_1^{\top } +\tilde{C}_1x(0,\tilde{B}_2x_3,\tilde{B}_3x_2)^{\top }+\tilde{C}_1x\tilde{C}_1^{\top }. \end{aligned}$$

Notice that both \(\tilde{B}_1x_2x_3\tilde{C}_1^{\top }\) and \(\tilde{C}_1x(0,\tilde{B}_2x_3,\tilde{B}_3x_2)^{\top }\) are even power terms which means that they do not affect the value of \(M_2\). Then we have,

$$\begin{aligned} \int _{\mathbb {R}^{3}}\tilde{D}_{1}\frac{\partial \tilde{D}}{\partial x_1}x^{\top }\tilde{p}_{eq}\text {d}x&= \int _{\mathbb {R}^{3}} \left( \begin{array}{c} 0 \\ \tilde{B}_1\tilde{B}_2 x_2x_3^2 \\ \tilde{B}_1\tilde{B}_3 x_2^2x_3 \end{array} \right) x^{\top }\tilde{p}_{eq}+\tilde{C}_{1}^{\top } \tilde{C}_{1}xx^{\top }\tilde{p}_{eq}\text {d}x \\&= \int _{\mathbb {R}^{3}} \left( \begin{array}{c c c} 0 &{}\quad 0 &{}\quad 0 \\ \tilde{B}_1\tilde{B}_2 x_1x_2x_3^2 &{}\quad \tilde{B}_1\tilde{B}_2x_2^2x_3^2 &{}\quad \tilde{B}_1\tilde{B}_2 x_2x_3^3\\ \tilde{B}_1\tilde{B}_3 x_1x_2^2x_3 &{}\quad \tilde{B}_1\tilde{B}_3 x_2^3x_3 &{}\quad \tilde{B}_1\tilde{B}_3 x_2^2x_3^2 \end{array} \right) \tilde{p}_{eq} \text {d}x\\&\quad +\,\tilde{C}_{1}^{\top }\tilde{C}_{1}\int _{\mathbb {R}^{3}} xx^{\top }\tilde{p}_{eq}\text {d}x \\&= \tilde{\sigma }_{eq}^4 \left( \begin{array}{c c c} 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad \tilde{B}_1\tilde{B}_2 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad \tilde{B}_1\tilde{B}_3 \end{array} \right) +\tilde{\sigma }_{eq}^2\tilde{C}_{1}^{\top }\tilde{C}_{1}. \end{aligned}$$

Similarly, for \(i=2\) and \(i=3\), we have

$$\begin{aligned} \int _{\mathbb {R}^{3}}\tilde{D}_{2}\frac{\partial \tilde{D}}{\partial x_2}x^{\top }\tilde{p}_{eq}\text {d}x = \tilde{\sigma }_{eq}^4 \left( \begin{array}{c c c} \tilde{B}_1\tilde{B}_2 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad \tilde{B}_2\tilde{B}_3 \end{array} \right) +\tilde{\sigma }_{eq}^2\tilde{C}_{2}^{\top }\tilde{C}_{2}, \\ \int _{\mathbb {R}^{3}}\tilde{D}_{3}\frac{\partial \tilde{D}}{\partial x_3}x^{\top }\tilde{p}_{eq}\text {d}x = \tilde{\sigma }_{eq}^4 \left( \begin{array}{c c c} \tilde{B}_1\tilde{B}_3 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad \tilde{B}_2\tilde{B}_3 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 \end{array} \right) +\tilde{\sigma }_{eq}^2\tilde{C}_{3}^{\top }\tilde{C}_{3}, \end{aligned}$$

respectively. Thus,

$$\begin{aligned} \hat{k}''_{x}(0)=\frac{\tilde{\sigma }_{eq}^{2}}{\sigma _{eq}^{2}} \left[ \tilde{\sigma }_{eq}^{2} \left( \begin{array}{c c c} \tilde{B}_1\tilde{B}_2+\tilde{B}_1\tilde{B}_3 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad \tilde{B}_1\tilde{B}_2+\tilde{B}_2\tilde{B}_3 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad \tilde{B}_1\tilde{B}_3+\tilde{B}_2\tilde{B}_3 \end{array} \right) +\tilde{C}^{2} \right] . \end{aligned}$$

Furthermore, since \(\sum _{i} \tilde{B}_i=0\), we arrive at,

$$\begin{aligned} \hat{k}''_{x}(0)=\frac{\tilde{\sigma }_{eq}^{2}}{\sigma _{eq}^{2}} [-\tilde{\sigma }_{eq}^{2} \text {diag}(\tilde{B}_1^2, \tilde{B}_2^2, \tilde{B}_3^2 )+\tilde{C}^2], \end{aligned}$$

which is the stated result.

Appendix 2: The Computation of \(M_4\) and \(M_5\) for the Langevin Dynamics Model

Here we show how to obtain the formulas for \(\hat{k}^{(4)}_A(0)\) and \(\hat{k}^{(5)}_A(0)\) for the Langevin dynamics model. Recall that the generator is given by,

$$\begin{aligned} \tilde{\mathcal {L}} = v\frac{\partial }{\partial x} + (-U'(x)-\tilde{\gamma }v) \frac{\partial }{\partial v} + \tilde{\gamma }k_B\tilde{T} \frac{\partial ^2}{\partial v^2}. \end{aligned}$$

Furthermore, we have the response operator,

$$\begin{aligned} \hat{k}_{A}(t) = \frac{1}{k_B T}\int _{\mathbb {R}^2}\int _{\mathbb {R}^2} v u \tilde{p}(x,v,t|y,u,0) \text {d}x\text {d}v\text {d}y \text {d}u. \end{aligned}$$

Direct calculations yield,

$$\begin{aligned} \hat{k}_{A}'(t)&= \frac{1}{k_B T}\int _{\mathbb {R}^2}\int _{\mathbb {R}^2} (-U'(x)-\tilde{\gamma }v)u \tilde{p}(x,v,t|y,u,0) \text {d}x\text {d}v\text {d}y\text {d}u,\\ \hat{k}_{A}''(t)&= \frac{1}{k_B T}\int _{\mathbb {R}^2}\int _{\mathbb {R}^2} (-vU''(x)+\tilde{\gamma }U'(x)+\tilde{\gamma }^{2} v) u \tilde{p}(x,v,t|y,u,0) \text {d}x\text {d}v\text {d}y \text {d}u. \end{aligned}$$

From fitting \(M_0\), we have \(T=\tilde{T}.\) Now we applying the generator \(\tilde{\mathcal {L}}\) again and we obtain

$$\begin{aligned} \hat{k}'''_A&=\frac{1}{k_B T}\int (-v^2 U'''(x)+2\tilde{\gamma }v U''(x)+U'(x)U''(x)-\tilde{\gamma }^{3}U'(x)\\&\quad -\,\tilde{\gamma }^3v)u \tilde{p}(x,v,t|y,u,0)\text {d}x \text {d}v\text {d}y\text {d}u, \end{aligned}$$

which leads to \(k'''_A(0)=2\tilde{\gamma }\mathbb {E}_{eq}(U''(x))-\tilde{\gamma }^3\). And applying the generator again we have

$$\begin{aligned} \hat{k}^{(4)}_A=\frac{1}{k_B T}\int f(x,v)u \tilde{p}(x,v,t|y,u,0)\text {d}x \text {d}v\text {d}y\text {d}u, \end{aligned}$$

where \( f(x,v)=-v^3U^{(4)}(x)+4\tilde{\gamma }v^2U'''(x)+v(U''(x))^{2}+3vU'(x)U''' (x)-2\tilde{\gamma }k_B\tilde{T}U'''(x)-2\tilde{\gamma }U'(x)U''(x)-3\tilde{\gamma }^{2}vU''(x) +\tilde{\gamma }^{3}U'(x)+\tilde{\gamma }^{4}v\). This formula leads to

$$\begin{aligned} \hat{k}^{(4)}_A(0)&=-\frac{1}{k_B\tilde{T}}\mathbb {E}_{eq}(v^4) \mathbb {E}_{eq}U^{(4)}(x)+\mathbb {E}_{eq}((U''(x))^2) +3\mathbb {E}_{eq}(U'(x)U'''(x))\\&\quad -\,3\tilde{\gamma }^2\mathbb {E}_{eq}(U''(x)) +\tilde{\gamma }^4. \end{aligned}$$

For \(\hat{k}_A^{(5)}(0)\) we have

$$\begin{aligned} \hat{k}_A^{(5)}(0)&=\frac{7\tilde{\gamma }}{k_BT}\mathbb {E}_{eq}(v^4) \mathbb {E}_{eq}U^{(4)}(x)-8\tilde{\gamma }k_BT\mathbb {E}_{eq}(U^{(4)} (x))-3\tilde{\gamma }\mathbb {E}_{eq}((U''(x))^2) \\&\quad -\,13\tilde{\gamma }\mathbb {E}_{eq}(U'(x)U'''(x)) +4\tilde{\gamma }^3\mathbb {E}_{eq}(U''(x))-\tilde{\gamma }^5. \end{aligned}$$

Thus these formulas require the fourth moment of v, \(\mathbb {E}_{eq}(U'U''')\), \(\mathbb {E}_{eq}(U^{(4)})\), \(\mathbb {E}_{eq}((U'')^2)\) and \(\mathbb {E}_{eq}(U'')\), in order to compute \(\hat{k}_A^{(4)}(0)\) and \(\hat{k}_A^{(5)}(0)\).

Notice \(v\sim \mathcal {N}(0,k_{B}T)\), thus \(\mathbb {E}_{eq}(v^4)=3(k_B T)^2\). Therefore, we can rewrite the two formula into

$$\begin{aligned} \hat{k}^{(4)}_A(0)&=-3k_BT\mathbb {E}_{eq}U^{(4)}(x)+\mathbb {E}_{eq} ((U''(x))^2)+3\mathbb {E}_{eq}(U'(x)U'''(x))\\&\quad -\,3\tilde{\gamma }^2\mathbb {E}_{eq}(U''(x))+\tilde{\gamma }^4, \\ \hat{k}_A^{(5)}(0)&=13\tilde{\gamma }k_BT\mathbb {E}_{eq}(U^{(4)}(x)) -3\tilde{\gamma }\mathbb {E}_{eq}((U''(x))^2)-13\tilde{\gamma } \mathbb {E}_{eq}(U'(x)U'''(x))\\&\quad +\,4\tilde{\gamma }^3\mathbb {E}_{eq}(U''(x)) -\tilde{\gamma }^5. \end{aligned}$$

These are the formulas implemented in producing the results in Fig. 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harlim, J., Li, X. & Zhang, H. A Parameter Estimation Method Using Linear Response Statistics. J Stat Phys 168, 146–170 (2017). https://doi.org/10.1007/s10955-017-1788-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-017-1788-9

Keywords

Mathematics Subject Classification

Navigation