Skip to main content
Log in

An Entropic Gradient Structure for Lindblad Equations and Couplings of Quantum Systems to Macroscopic Models

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We show that all Lindblad operators (i.e., generators of quantum Markov semigroups) on a finite-dimensional Hilbert space satisfying the detailed balance condition with respect to the thermal equilibrium state can be written as a gradient system with respect to the relative entropy. We discuss also thermodynamically consistent couplings to macroscopic systems, either as damped Hamiltonian systems with constant temperature or as GENERIC systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aschbacher, W., Jakšić, V., Pautrat, Y., Pillet, C.-A.: Topics in non-equilibrium quantum statistical mechanics. In: Attal S., Joye A., Pillet C.-A. (edS.) Open Quantum Systems III. Lecture Notes Mathematics, vol. 1882, pp. 1–116. Springer (2006)

  2. Alicki, R.: On the detailed balance condition for non-Hamiltonian systems. Rep. Math. Phys. 10(2), 249–258 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Albert, V.V., Jiang, L.: Symmetries and conserved quantities in Lindblad master equations. Phys. Rev. A 59, 022118 (2014)

    Article  ADS  Google Scholar 

  4. Baumgartner, B., Narnhofer, H.: Analysis of quantum semigroups with GKS-Lindblad generators. II. General. J. Phys. A 41, 395303 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baumgartner, B., Narnhofer, H.: The structures of state space concerning quantum dynamical semigroups. Rev. Math. Phys. 24(2), 1250001 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baumgartner, B., Narnhofer, H., Thirring, W.: Analysis of quantum semigroups with GKS-Lindblad generators. I. Simple generators. J. Phys. A 41(6), 065201 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Carlen, E.A., Maas, J.: An analog of the 2-Wasserstein metric in non-commutative probability under which the fermionic Fokker-Planck equation is gradient flow for the entropy. Commun. Math. Phys. 331(3), 887–926 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Carlen, E.A., Maas, J.: Gradient flow and entropy inequalities for quantum markov semigroups with detailed balance. arXiv:1609.01254 (2016)

  9. Chow, S.-N., Huang, W., Li, Y., Zhou, H.: Fokker-Planck equations for a free energy functional or Markov process on a graph. Arch. Ration. Mech. Anal. 203(3), 969–1008 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Davies, E.B.: Markovian master equations. Commun. Math. Phys. 39, 91–110 (1974)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Duong, M.H., Peletier, M.A., Zimmer, J.: GENERIC formalism of a Vlasov-Fokker-Planck equation and connection to large-deviation principles. Nonlinearity 26(11), 2951–2971 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Dumas, É.: Global existence for Maxwell-Bloch systems. J. Differ. Equ. 219(2), 484–509 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Erbar, M., Maas, J.: Ricci curvature of finite Markov chains via convexity of the entropy. Arch. Ration. Mech. Anal. 206(3), 997–1038 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Grmela, M., Öttinger, H.C.: Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys. Rev. E 56(6), 6620–6632 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  15. Jordan, R., Kinderlehrer, D., Otto, F.: Free energy and the fokker-planck equation. Phys. D 107(2–4), 265–271 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29(1), 1–17 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Joly, J.-L., Metivier, G., Rauch, J.: Transparent nonlinear geometric optics and Maxwell-Bloch equations. J. Differ. Equ. 166(1), 175–250 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Jakšić, V., Pillet, C.-A., Westrich, M.: Entropic fluctuations of quantum dynamical semigroups. J. Stat. Phys. 154(1–2), 153–187 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Kossakowski, A., Frigerio, A., Gorini, V., Verri, M.: Quantum detailed balance and KMS condition. Commun. Math. Phys. 57(2), 97–110 (1977). Erratum. CMP 60, 96 (1978)

  20. Kubo, R.: Some aspects of the statistical-mechanical theory of irreversible processes. In: Brittin, W.E., Dunham, L.G. (eds.) Lectures in Theoretical Physics. Interscience Publishers, New York (1959)

    Google Scholar 

  21. Lüdge, K., Malić, E., Schöll, E.: The role of decoupled electron and hole dynamics in the turn-on behavior of semiconductor quantum-dot lasers. In: Caldas, M.J., Studart, N. (eds.) 29th Conference on the Physics of Semiconductors (2009)

  22. Maas, J.: Gradient flows of the entropy for finite Markov chains. J. Funct. Anal. 261, 2250–2292 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mielke, A.: Formulation of thermoelastic dissipative material behavior using GENERIC. Contin. Mech. Thermodyn. 23(3), 233–256 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Mielke, A.: A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems. Nonlinearity 24, 1329–1346 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Mielke, A.: Dissipative quantum mechanics using GENERIC. In: Johann, A., Kruse, H.-P., Rupp, F., Schmitz, S. (eds.) Recent Trends in Dynamical Systems, pp. 555–586. Springer Verlag (2013). Proceedings of a Conference in Honor of Jürgen Scheurle

  26. Mielke, A.: Geodesic convexity of the relative entropy in reversible Markov chains. Calc. Var. Partial Differ. Equ. 48(1), 1–31 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mielke, A.: On thermodynamical couplings of quantum mechanics and macroscopic systems. In: Exner, P., önig, W.K., Neidhardt, H. (eds.) Mathematical Results in Quantum Mechanics, pp. 331–348, Singapore (2015). World Scientific. Proceedings of the QMath12 Conference

  28. Mielke, A., Mittnenzweig, M., Rotundo, N.: On a thermodynamically consistent coupling of quantum systems to reaction-rate equation. In preparation (2017)

  29. Mielke, A., Thomas, M.: GENERIC—A powerful tool for thermomechanical modeling. In preparation (2016)

  30. Morrison, P.J.: Bracket formulation for irreversible classical fields. Phys. Lett. A 100(8), 423–427 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  31. Morrison, P.J.: A paradigm for joined Hamiltonian and dissipative systems. Phys. D 18(1–3), 410–419 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  32. Morrison, P.J.: Thoughts on brackets and dissipation: old and new. J. Phys. 169, 012006 (2009)

    Google Scholar 

  33. Mielke, A., Peletier, M.A., Renger, D.R.M.: On the relation between gradient flows and the large-deviation principle, with applications to Markov chains and diffusion. Potential Anal. 41(4), 1293–1327 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Onsager, L.: Reciprocal relations in irreversible processes, I+II. Phys. Rev., 37, 405–426 (1931). (part II, 38:2265–2279)

  35. Öttinger, H.C., Grmela, M.: Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism. Phys. Rev. E 56(6), 6633–6655 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  36. Öttinger, H.C.: The nonlinear thermodynamic quantum master equation. Phys. Rev. A 82, 052119 (2010)

    Article  ADS  Google Scholar 

  37. Öttinger, H.C.: The geometry and thermodynamics of dissipative quantum systems. Europhys. Lett. 94, 10006 (2011)

    Article  Google Scholar 

  38. Ritter, S., Gartner, P., Gies, C., Jahnke, F.: Emission properties and photon statistics of a single quantum dot laser. Opt. Express 18(10), 9909–9921 (2010)

    Article  ADS  Google Scholar 

  39. Spohn, H.: Entropy production for quantum dynamical semigroups. J. Math. Phys. 19(5), 1227–1230 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Wilcox, R.M.: Exponential operators and parameter differentiation in quantum physics. J. Math. Phys. 8(4), 962–982 (1967)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research of M.M. was supported by ERC via AdG 267802 AnaMultiScale, and A.M. was partially supported by DFG via SFB 787 Nanophotonics (Subproject B4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Mielke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mittnenzweig, M., Mielke, A. An Entropic Gradient Structure for Lindblad Equations and Couplings of Quantum Systems to Macroscopic Models. J Stat Phys 167, 205–233 (2017). https://doi.org/10.1007/s10955-017-1756-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-017-1756-4

Keywords

Navigation