Skip to main content

Advertisement

Log in

Mean Field Analysis of Large-Scale Interacting Populations of Stochastic Conductance-Based Spiking Neurons Using the Klimontovich Method

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We investigate the dynamics of large-scale interacting neural populations, composed of conductance based, spiking model neurons with modifiable synaptic connection strengths, which are possibly also subjected to external noisy currents. The network dynamics is controlled by a set of neural population probability distributions (PPD) which are constructed along the same lines as in the Klimontovich approach to the kinetic theory of plasmas. An exact non-closed, nonlinear, system of integro-partial differential equations is derived for the PPDs. As is customary, a closing procedure leads to a mean field limit. The equations we have obtained are of the same type as those which have been recently derived using rigorous techniques of probability theory. The numerical solutions of these so called McKean–Vlasov–Fokker–Planck equations, which are only valid in the limit of infinite size networks, actually shows that the statistical measures as obtained from PPDs are in good agreement with those obtained through direct integration of the stochastic dynamical system for large but finite size networks. Although numerical solutions have been obtained for networks of Fitzhugh–Nagumo model neurons, which are often used to approximate Hodgkin–Huxley model neurons, the theory can be readily applied to networks of general conductance-based model neurons of arbitrary dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Klimontovich, YuL: Kinetic Theory of Nonideal Gases and Nonideal Plasmas. Pergamon Press, Oxford (1982)

    Google Scholar 

  2. Ichimaru, S.: Statistical Plasma Physics, vol. I. Addison-Wesley Publishing Company, Boston (1992)

    Google Scholar 

  3. Nicholson, D.R.: Introduction to Plasma Theory. Krieger, Malabar, FL (1992)

    Google Scholar 

  4. Buice, M.A., Chow, C.C.: Dynamic finite size effects in spiking neural networks. PLOS Comput. Biol. 9(1), e1002872 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  5. Tuckwell, H.C.: Introduction to Theoretical Neurobiology. Volume 1. Linear Cable Theory and Dendritic Structure—Volume 2. Nonlinear and Stochastic Theories. Cambridge University Press, Cambridge (1988)

  6. Tuckwell, H.C.: Stochastic Processes in the Neurosciences. SIAM, Philadelphia, PA (1989)

    Book  MATH  Google Scholar 

  7. Tuckwell, H.C.: Stochastic Partial Differential Equation Models in Neurobiology: Linear and Nonlinear Models for Spiking Neurons. Springer Lecture Notes in Mathematics, Stochastic Biomathematical Models, Chapter 6. Springer, Berlin (2013)

  8. Tuckwell, H.C.: Stochastic Modeling of Spreading Cortical Depression. Springer Lecture Notes in Mathematics. Stochastic Biomathematical Models, Chapter 8. Springer, Berlin (2013)

  9. Ermentrout, G.B., Terman, D.H.: Mathematical Foundations of Neuroscience, Interdisciplinary Applied Mathematics, vol. 35. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  10. Rodriguez, R., Tuckwell, H.C.: Statistical properties of stochastic nonlinear dynamical models of single spiking neurons and neural networks. Phys. Rev. E 54, 5585–5590 (1996)

    Article  ADS  Google Scholar 

  11. Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  12. Kuramoto, Y.: Cooperative dynamics of oscillator community a study based on lattice of rings. Prog. Theor. Phys. Suppl. 79, 223–240 (1984)

    Article  ADS  Google Scholar 

  13. Kuramoto, Y., Nishikawa, I., Takayama, H.: Cooperative Dynamics in Complex Physical Systems. Springer, New York (1988)

    Google Scholar 

  14. Mirollo, R.E., Strogatz, S.H.: The spectrum of the locked state for the Kuramoto model of coupled oscillators. Physica D 205, 249–266 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Abbott, L.F., van Vreeswijk, C.: Asynchronous states in networks of pulse-coupled oscillators. Phys. Rev. E 48, 1483–1490 (1993)

    Article  ADS  Google Scholar 

  16. Daido, H.: Onset of cooperative entrainment in limit-cycle oscillators with uniform all-to-all interactions: bifurcation of the order function. Physica D 91, 24–66 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Hildebrand, E.J., Buice, M.A., Chow, C.C.: Kinetic theory of coupled oscillators. Phys. Rev. Lett. 98, 054101 (2007)

    Article  ADS  Google Scholar 

  18. Tuckwell, H.C.: Cortical network modeling: analytical methods for firing rates and some properties of networks of LIF neurons. J. Physiol. Paris 100, 88–99 (2006)

    Article  Google Scholar 

  19. Ly, C., Tranchina, D.: Critical analysis of dimension reduction by a moment closure method in a population density approach to neural network modeling. Neural Comput. 19, 2032–2092 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nicola, W., Campbell, S.A.: Bifurcations of large networks of two-dimensional integrate and fire neurons. J. Comput. Neurosci. 35(1), 87–108 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nicola, W., Campbell, S.A.: Non-smooth bifurcations of mean field systems of two-dimensional integrate and fire neurons (2014). arXiv:1408.4767

  22. Knight, B.W.: Dynamics of encoding in neuron populations: some general mathematical features. Neural Comput. 12, 473–518 (2000)

    Article  Google Scholar 

  23. Apfaltrer, F., Ly, C., Tranchina, D.: Population density methods for stochastic neurons with realistic synaptic kinetics: firing rate dynamics and fast computational methods. Network 17, 373–418 (2006)

    Article  Google Scholar 

  24. Hansel, D., Mato, G.: Existence and stability of persistent states in large neural networks. Phys. Rev. Lett. 86(18), 4175 (2001)

    Article  ADS  Google Scholar 

  25. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)

    Article  Google Scholar 

  26. Rodriguez, R., Tuckwell, H.C.: Noisy spiking neurons and networks: useful approximations for firing probabilities and global behavior description. Biosystems 48, 187–194 (1998)

    Article  Google Scholar 

  27. Tuckwell, H.C., Rodriguez, R.: Analytical and simulation results for stochastic Fitzhugh-Nagumo neurons and neural networks. J. Comput. Neurosci. 5, 91–113 (1998)

    Article  MATH  Google Scholar 

  28. Baladron, J., Fasoli, D., Faugeras, O., Touboul, J.: Mean-field description and propagation of chaos in networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons. J. Math. Neurosci 2, 10 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Touboul, J.: Limits and dynamics of stochastic neuronal networks with random heterogeneous delays. J. Stat. Phys. 149, 569–597 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Mischler, S., Quininao, C., Touboul, J.: On a kinetic Fitzhugh Nagumo model of neuronal network (2015). arXiv:1503.00492v1 [math.AP]

  31. Faugeras, O., Touboul, J., Cessac, B.: A constructive mean-field analysis of multi-population neural networks with random synaptic weights and stochastic inputs. Front. Comp. Neurosci. 3(1), 1–28 (2009)

    Google Scholar 

  32. De Masi, A., Galves, A., Löcherbach, E., Presutti, E.: Hydrodynamic limit for interacting neurons. J. Stat. Phys. 158(4), 866–902 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Song, S., Sjöström, P.J., Reigl, M., Nelson, S., Chklovskii, D.B.: Highly nonrandom features of synaptic connectivity in local cortical circuits. PLOS Biol. 3(3), 0507–0519 (2005)

    Article  Google Scholar 

  34. McLaughlin, D., Shapley, R., Shelley, M.: Large-scale modeling of the primary visual cortex: influence of cortical architecture upon neuronal response. J. Physiol. Paris 97, 237–252 (2003)

    Article  Google Scholar 

  35. Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J.M., Diesmann, M., Morrison, A., Goodman, P.H., Harris Jr., F.C., Zirpe, M.: Simulation of networks of spiking neurons: a review of tools and strategies. J. Comput. Neurosci. 23(3), 349–398 (2007)

    Article  MathSciNet  Google Scholar 

  36. Djurfeldt, M., Ekeberg, Ö., Lansner, A.: Large-scale modeling-a tool for conquering the complexity of the brain. Front. Neuroinform. 1, 1–4 (2008)

    Google Scholar 

  37. Fasoli, D., Faugeras, O., Panzeri, S.: A formalism for evaluating analytically the cross-correlation structure of a firing-rate network model. J. Math. Neurosci. 5(6), 1–53 (2015)

    MathSciNet  MATH  Google Scholar 

  38. Amit, D.J., Brunel, N.: Dynamics of a recurrent network of spiking neurons before and following learning. Network 8, 373–404 (1997)

    Article  MATH  Google Scholar 

  39. Fasoli, D., Cattani, A., Panzeri, S.: The complexity of dynamics in small neural circuits (2015). arXiv:1506.08995

  40. Achard, P., Zanella, S., Rodriguez, R., Hilaire, G.: Perinatal maturation of the respiratory rhythm generator in mammals: from experimental results to computational simulation. Respir. Physiol. Neurobiol. 149, 17–27 (2005)

    Article  Google Scholar 

  41. Harris-Warrick, R.M.: General principles of rhythmogenesis in central pattern networks. Prog. Brain Res. 187, 213–222 (2010)

    Article  Google Scholar 

  42. Dayan, P., Abbott, L.F.: Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  43. Lindsey, B.G., Rybak, I.A., Smith, J.C.: Computational models and emergent properties of respiratory neural networks. Compr. Physiol. 2(3), 1619–1670 (2012)

    Google Scholar 

  44. Sakaguchi, H.: Cooperative phenomena in coupled oscillator systems under external fields. Prog. Theor. Phys. 79(1), 39–46 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  45. Strogatz, S.H.: From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D 143, 1–20 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their helpful criticisms and suggestions which led to a much improved manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry C. Tuckwell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gandolfo, D., Rodriguez, R. & Tuckwell, H.C. Mean Field Analysis of Large-Scale Interacting Populations of Stochastic Conductance-Based Spiking Neurons Using the Klimontovich Method. J Stat Phys 166, 1310–1333 (2017). https://doi.org/10.1007/s10955-016-1702-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-016-1702-x

Keywords

Mathematics Subject Classification

Navigation