Skip to main content
Log in

A Deep Stochastic Model for Detecting Community in Complex Networks

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Discovering community structures is an important step to understanding the structure and dynamics of real-world networks in social science, biology and technology. In this paper, we develop a deep stochastic model based on non-negative matrix factorization to identify communities, in which there are two sets of parameters. One is the community membership matrix, of which the elements in a row correspond to the probabilities of the given node belongs to each of the given number of communities in our model, another is the community-community connection matrix, of which the element in the i-th row and j-th column represents the probability of there being an edge between a randomly chosen node from the i-th community and a randomly chosen node from the j-th community. The parameters can be evaluated by an efficient updating rule, and its convergence can be guaranteed. The community-community connection matrix in our model is more precise than the community-community connection matrix in traditional non-negative matrix factorization methods. Furthermore, the method called symmetric nonnegative matrix factorization, is a special case of our model. Finally, based on the experiments on both synthetic and real-world networks data, it can be demonstrated that our algorithm is highly effective in detecting communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Richard J. Bearman Peter S. & Harris Kathleen Mullan This work uses data from Add Health, a program project designed by Udry, funded by a Grant P01-HD31921 from the National Institute of Child Health, with cooperative funding from 17 other agencies. Special Acknowledgment is due Ronald R. Rindfuss Human Development, and 123 W. Franklin Street Chapel Hill NC 27516-2524 (addhealth@unc.edu) Barbara Entwisle for assistance in the original design. Persons interested in obtaining data files from Add Health should contact Add Health, Carolina Population Center.

References

  1. Strogatz, S.H.: Exploring complex networks. Nature 410(6825), 268–276 (2001)

    Article  ADS  Google Scholar 

  2. Albert, R., Barabasi, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Boccaletti, S., Latora, V., Moreno, Y., et al.: Complex networks: structure and dynamics. Phys. Rep. 424(4), 175–308 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  4. Girvan, M., Newman, M.E.J.: Newman, Mark E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 99(12), 7821–7826 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Newman, M.E.J.: Fast algorithm for detecting community structure in networks. Phys. Rev. E 69(6), 066133 (2004)

    Article  ADS  Google Scholar 

  6. Guimera, R., Sales-Pardo, M., Amaral, L.A.N.: Modularity from fluctuations in random graphs and complex networks. Phys. Rev. E 70(2), 0025101 (2004)

    Article  ADS  Google Scholar 

  7. Duch, J., Arenas, A.: Community detection in complex networks using extremal optimization. Phys. Rev. E 72(2), 027104 (2005)

    Article  ADS  Google Scholar 

  8. Newman, M.E.J.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74(3), 036104 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  9. Chauhan, S., Girvan, M., Ott, E.: Spectral properties of networks with community structure. Phys. Rev. E 80(5), 056114 (2009)

    Article  ADS  Google Scholar 

  10. Diaz-Guilera, A.: Dynamical and spectral properties of complex networks. Phys. Rev. Lett. 96, 114102 (2006)

    Article  ADS  Google Scholar 

  11. Newman, M.E.J.: Spectral methods for community detection and graph partitioning. Phys. Rev. E 88(4), 042822 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  12. Zhang, H., Giles, C.L., Foley, H.C., et al.: Probabilistic community discovery using hierarchical latent gaussian mixture model. AAAI 7, 663–668 (2007)

    Google Scholar 

  13. Leicht, E.A., Newman, M.E.J.: Community structure in directed networks. Phys. Rev. Lett. 100(11), 118703 (2008)

    Article  ADS  Google Scholar 

  14. Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal community structure. Proc. Natl. Acad. Sci. USA 105(4), 1118–1123 (2008)

    Article  ADS  Google Scholar 

  15. Karrer, B., Newman, M.E.J.: Stochastic blockmodels and community structure in networks. Phys. Rev. E 83(1), 016107 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  16. Bickel, P.J., Chen, A.: A nonparametric view of network models and newman-girvan and other modularities. Proc. Natl. Acad. Sci. USA 106(50), 21068–21073 (2005)

    Article  ADS  Google Scholar 

  17. Ding, C.H.Q., He, X., Simon, H.D.: On the equivalence of nonnegative matrix factorization and spectral clustering. SDM 5, 606–610 (2005)

    Google Scholar 

  18. Lee, D. D., Seung, H. S.: Algorithms for non-negative matrix factorization. In: Advances in neural information processing systems (2001)

  19. Jin, D., Chen, Z., He, D., et al.: Modeling with node degree preservation can accurately find communities. AAAI, pages 160–167, 2015

  20. Wang, F., Li, T., Wang, X., et al.: Community discovery using nonnegative matrix factorization. Data Min. Knowl. Discov. 22(3), 493–521 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cao, X., Wang, X., Jin, D., et al.: A stochastic model for detecting overlapping and hierarchical community structure. PLoS ONE 10(3), e0119171 (2015)

    Article  Google Scholar 

  22. Fu, J., Wu, J., Liu, C.: Leaders in communities of real-world networks. Phys. A 444, 428–441 (2016)

    Article  Google Scholar 

  23. Cao, X., Wang, X., Jin, D., Cao, Y., He, D.: Identifying overlapping communities as well as hubs and outliers via nonnegative matrix factorization. Sci. Rep. 3, 2993 (2013)

    ADS  Google Scholar 

  24. Cao, X., Wang, X., Jin, D., Guo, X., Tang, X.: A stochastic model for detecting overlapping and hierarchical community structure. PLoS ONE 10(3), e0119171 (2015)

    Article  Google Scholar 

  25. Zhang, Y., Yeung, D. -Y.: Overlapping community detection via bounded nonnegative matrix tri-factorization. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 606–614. ACM, (2012)

  26. He, D., Jin, D., Baquero, C., Liu, D.: Link community detection using generative model and nonnegative matrix factorization. PloS ONE 9(1), e86899 (2014)

    Article  ADS  Google Scholar 

  27. Wang, D., Li, T., Zhu, S., et al.: Multi-document summarization via sentence-level semantic analysis and symmetric matrix factorization. Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval. ACM, pp. 307–314, (2008)

  28. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community detection algorithms. Phys. Rev. E 78(4), 046110 (2008)

    Article  ADS  Google Scholar 

  29. Danon, L., Diaz-Guilera, A., Duch, J., et al.: Comparing community structure identification. J. Stat. Mech. 2005(09), 09008 (2005)

    Article  Google Scholar 

  30. Leskovec, J., Lang, K. J., Mahoney, M.: Empirical comparison of algorithms for network community detection. Proceedings of the 19th International Conference on World Wide Web. ACM, pp. 631–640, (2010)

  31. Blondel, V.D., Guillaume, J.L., Lambiotte, R., et al.: Fast unfolding of communities in large networks. J. Stat. Mech. 2008(10), 10008 (2008)

    Article  Google Scholar 

  32. Wang, F., Li, T., Wang, X., Zhu, S., Ding, C.: Community discovery using nonnegative matrix factorization. Data Min. Knowl. Discov. 22(3), 493–521 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lancichinett, A., Radicch, F., Ramasco, J.J., Fortunato, S.: Finding statistically significant communities in networks. PloS ONE 6(4), e18961 (2011)

    Article  ADS  Google Scholar 

  34. Lusseau, D., Schneider, K., Boisseau, O.J., Haase, P., Slooten, E., Dawson, S.M.: The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations. Behav. Ecol. Sociobiol. 54(4), 396–405 (2003)

    Article  Google Scholar 

  35. Zachary, W.W.: An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33, 452–473 (1977)

    Article  Google Scholar 

  36. Adamic, L. A. , Natalie, G.: The political blogosphere and the 2004 us election: divided they blog. In: Proceedings of the 3rd international workshop on Link discovery, pp. 36–43. ACM, 2005

  37. Newman, M.E.J.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 103(23), 8577–8582 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Nature Science Foundation of China (11271006), Independent Innovation Foundation of Shandong University (IFYT 14013), Shandong Provincial Natural Science Foundation (ZR2012GQ002, ZR2014AQ001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianliang Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, J., Wu, J. A Deep Stochastic Model for Detecting Community in Complex Networks. J Stat Phys 166, 230–243 (2017). https://doi.org/10.1007/s10955-016-1681-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-016-1681-y

Keywords

Navigation