Skip to main content
Log in

Quantum Algebra Symmetry of the ASEP with Second-Class Particles

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider a two-component asymmetric simple exclusion process (ASEP) on a finite lattice with reflecting boundary conditions. For this process, which is equivalent to the ASEP with second-class particles, we construct the representation matrices of the quantum algebra \(U_q[\mathfrak {gl}(3)]\) that commute with the generator. As a byproduct we prove reversibility and obtain in explicit form the reversible measure. A review of the algebraic techniques used in the proofs is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. The occupation numbers can be formally regarded as families of mappings \(a_k: \mathbb {S}^L \mapsto \{0,1\}\), \(b_k: \mathbb {S}^L \mapsto \{0,1\}\) and should thus be understood as functions \(a_k(\eta )\), \(b_k(\eta )\) of \(\eta \). Since the functional argument \(\eta \) will always be clear from context [as is the case e.g. in (4)], we do not write it explicitly. However, we shall usually write explicitly the argument for the particle number functions \(N(\eta )\), \(M(\eta )\) to contrast them with their numerical values N, M.

  2. We shall use interchangeably the arguments \(\eta \), \(\mathbf {z}\), \(\{\mathbf {x},\mathbf {y}\}\) for functions of the configurations. When the argument is clear from context it may be omitted.

  3. We shall usually omit the set \(\mathbb {S}^L\) in the summation symbol and simply write \(\sum _{\eta }\).

  4. The connection to integrable models, in particular the parameter dependence of R, the construction of the associated statistical mechanics transfer matrix, and its quantum Hamiltonian limit, is not important for the purposes of this work. We refer the interested reader to [10, 11, 19] for more details and to [2] for an introduction to the field.

References

  1. Alcaraz, F.C., Rittenberg, V.: Reaction–diffusion processes as physical realizations of Hecke algebras. Phys. Lett. B 314, 377–380 (1993)

    Article  ADS  Google Scholar 

  2. Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic, New York (1982)

    MATH  Google Scholar 

  3. Belitsky, V., Schütz, G.M.: Self-duality for the two-component asymmetric simple exclusion process. arXiv:1504.05096 (2015)

  4. Burdík, Č., Havlíček, M., Vančura, A.: Irreducible highest weight representations of quantum groups \(U(gl(n,{\mathbb{C}}))\). Commun. Math. Phys. 148(2), 417–423 (1992)

    Article  MATH  ADS  Google Scholar 

  5. Burroughs, N.: The universal R-Matrix for \(U_qsl(3)\) and beyond!. Commun. Math. Phys. 127, 109–128 (1990)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Derrida, B., Janowsky, S.A., Lebowitz, J.L., Speer, E.R.: Exact solution of the totally asymmetric simple exclusion process: shock profiles. J. Stat. Phys. 73, 813–842 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Evans, M.R., Ferrari, P.A., Mallick, K.: Matrix representation of the stationary measure for the multispecies TASEP. J. Stat. Phys. 135(2), 217–239 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Ferrari, P.A., Martin, J.B.: Stationary distributions of multi-type totally asymmetric exclusion processes. Ann. Probab. 35(3), 807–832 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ferrari, P.A., Kipnis, C., Saada, E.: Microscopic structure of travelling waves in the asymmetric simple exclusion process. Ann. Probab. 19(1), 226–244 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  10. Jimbo, M.: A \(q\)-analogue of \(U(\mathfrak{gl}(N + 1))\), Hecke Algebra, and the Yang–Baxter equation. Lett. Math. Phys. 11, 247–252 (1986)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Jones, V.R.F.: Baxterization. Int. J. Mod. Phys. B 4(5), 701–713 (1990)

    Article  MATH  ADS  Google Scholar 

  12. Liggett, T.M.: Interacting Particle Systems. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  13. Liggett, T.M.: Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  14. Lloyd, P., Sudbury, A., Donnelly, P.: Quantum operators in classical probability theory: I “Quantum spin” techniques and the exclusion model of diffusion. Stoch. Process. Appl. 61(2), 205–221 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  15. Martin, P.P., Rittenberg, V.: A template for quantum spin chain spectra. Int. J. Mod. Phys. A 7(Suppl. 1B), 707–730 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Perk, J.H.H., Schultz, C.L.: New families of commuting transfer matrices in \(q\)-state vertex models. Phys. Lett. 84A, 407–410 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  17. Prolhac, S., Evans, M.R., Mallick, K.: Matrix product solution of the multispecies partially asymmetric exclusion process. J. Phys. A Math. Gen. 42, 165004 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  18. Sandow, S., Schütz, G.: On \(U_q[SU(2)]\)-symmetric driven diffusion. Europhys. Lett. 26, 7–12 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  19. Schultz, C.L.: Solvable q-state models in lattice statistics and quantum field theory. Phys. Rev. Lett. 46, 629–632 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  20. Schütz, G.M.: Duality relations for the asymmetric exclusion process. J. Stat. Phys. 86(5/6), 1265–1287 (1997)

    Article  MATH  ADS  Google Scholar 

  21. Schütz, G.M.: Exactly solvable models for many-body systems far from equilibrium. In: Domb, C., Lebowitz, J. (eds.) Phase Transitions and Critical Phenomena, vol. 19, pp. 1–251. Academic Press, London (2001)

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by DFG and by CNPq through the Grant 307347/2013-3. GMS thanks the University of São Paulo, where part of this work was done, for kind hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Schütz.

Appendix

Appendix

We display some explicit results for unnormalized stationary distributions for small lattices \(L=2,3,4\) and also L arbitrary with small particle numbers \(N+M = 1,2,3,4\).

\(\underline{N+M=1:}\)

$$\begin{aligned} \pi ^*(\{x\},\emptyset )\propto & {} q^{2x-1} \\ \pi ^*(\emptyset ,\{y\})\propto & {} q^{-2y+1} \end{aligned}$$

\(\underline{N+M=2:}\)

$$\begin{aligned} \pi ^*(\{x_1,x_2\},\emptyset )\propto & {} q^{2 x_1 + 2 x_2 - 2} \\ \pi ^*(\{x_1\},\{y_1\})\propto & {} \left\{ \begin{array}{ll} q^{2 x_1 - 2 y_1 - 1} &{} \quad y_1<x_1 \\ q^{2 x_1 - 2 y_1 + 1} &{} \quad y_1>x_1 \end{array} \right. \\ \pi ^*(\emptyset ,\{y_1,y_2\})\propto & {} q^{-2 y_1 - 2 y_2 + 2} \end{aligned}$$

\(\underline{N+M=3:}\)

$$\begin{aligned} \pi ^*(\{x_1,x_2,x_3\},\emptyset )\propto & {} q^{2 x_1 + 2 x_2 + 2 x_3 - 3} \\ \pi ^*(\{x_1,x_2\},\{y_1\})\propto & {} \left\{ \begin{array}{ll} q^{2 x_1 + 2 x_2 - 2 y_1 - 3} &{} \quad y_1<x_1,x_2 \\ q^{2 x_1 + 2 x_2 - 2 y_1 - 1} &{} \quad x_1< y_1<x_2 \\ q^{2 x_1 + 2 x_2 - 2 y_1 + 1} &{} \quad x_1,x_2< y_1 \end{array} \right. \\ \pi ^*(\{x_1\},\{y_1,y_2\})\propto & {} \left\{ \begin{array}{ll} q^{2 x_1 - 2 y_1 - 2 y_2 - 1} &{} \quad y_1,y_2<x_1 \\ q^{2 x_1 - 2 y_1 - 2 y_2 + 1} &{} \quad y_1< x_1<y_2 \\ q^{2 x_1 - 2 y_1 - 2 y_2 + 3} &{} \quad x_1< y_1,y_2 \end{array} \right. \\ \pi ^*(\emptyset ,\{y_1,y_2,y_3\})\propto & {} q^{- 2 y_1 - 2 y_2 - 2 y_3 + 3} \end{aligned}$$

\(\underline{N+M=4:}\)

$$\begin{aligned} \pi ^*(\{x_1,x_2,x_3,x_4\},\emptyset )\propto & {} q^{2 x_1 + 2 x_2 + 2 x_3 + 2 x_4 - 4} \\ \pi ^*(\{x_1,x_2,x_3\},\{y_1\})\propto & {} \left\{ \begin{array}{ll} q^{2 x_1 + 2 x_2 + 2 x_3 - 2 y_1 - 5} &{} \quad y_1<x_1,x_2,x_3 \\ q^{2 x_1 + 2 x_2 + 2 x_3 - 2 y_1 - 3} &{} \quad x_1< y_1<x_2,x_3 \\ q^{2 x_1 + 2 x_2 + 2 x_3 - 2 y_1 - 1} &{} \quad x_1,x_2< y_1<x_3 \\ q^{2 x_1 + 2 x_2 + 2 x_3 - 2 y_1 + 1} &{} \quad x_1,x_2,x_3< y_1 \end{array} \right. \\ \pi ^*(\{x_1,x_2\},\{y_1,y_2\})\propto & {} \left\{ \begin{array}{ll} q^{2 x_1 + 2x_2 - 2 y_1 - 2 y_2 - 4} &{} \quad y_1,y_2<x_1,x_2 \\ q^{2 x_1 + 2x_2 - 2 y_1 - 2 y_2 - 2} &{} \quad y_1<x_1<y_2<x_2 \\ q^{2 x_1 + 2x_2 - 2 y_1 - 2 y_2} &{} \quad y_1<x_1,x_2<y_2 \\ q^{2 x_1 + 2x_2 - 2 y_1 - 2 y_2} &{} \quad x_1<y_1,y_2<x_2 \\ q^{2 x_1 + 2x_2 - 2 y_1 - 2 y_2 + 2} &{} \quad x_1<y_1<x_2<y_2 \\ q^{2 x_1 + 2x_2 - 2 y_1 - 2 y_2 + 4} &{} \quad x_1,x_2<y_1,y_2 \end{array} \right. \\ \pi ^*(\{x_1\},\{y_1,y_2,y_3\})\propto & {} \left\{ \begin{array}{ll} q^{2 x_1 - 2 y_1 - 2 y_2 - 2 y_3 - 1} &{} \quad y_1,y_2,y_3 < x_1\\ q^{2 x_1 - 2 y_1 - 2 y_2 - 2 y_3 + 1} &{} \quad y_1,y_2< x_1<x_3 \\ q^{2 x_1 - 2 y_1 - 2 y_2 - 2 y_3 + 3} &{} \quad y_1< x_1<y_2,y_3 \\ q^{2 x_1 - 2 y_1 - 2 y_2 - 2 y_3 + 5} &{} \quad x_1 < y_1,y_2,y_3 \end{array} \right. \\ \pi ^*(\emptyset ,\{y_1,y_2,y_3,y_4\})\propto & {} q^{- 2 y_1 - 2 y_2 - 2 y_3 - 2 y_4 + 4} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belitsky, V., Schütz, G.M. Quantum Algebra Symmetry of the ASEP with Second-Class Particles. J Stat Phys 161, 821–842 (2015). https://doi.org/10.1007/s10955-015-1363-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1363-1

Keywords

Mathematics Subject Classification

Navigation