Skip to main content
Log in

Slippery Wave Functions

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Superfluids and superconductors show a very surprising behavior at low temperatures. As their temperature is reduced, materials of both kinds can abruptly fall into a state in which they will support a persistent, essentially immortal, flow of particles. Unlike anything in classical physics, these flows produce neither friction nor resistance. A major accomplishment of Twentieth Century physics was the development of an understanding of this very surprising behavior via the construction of partially microscopic and partially macroscopic quantum theories of superfluid helium and superconducting metals. Such theories come in two parts: a theory of the motion of particle-like excitations, called quasiparticles, and of the persistent flows itself via a huge coherent excitation, called a condensate. Two people, above all others, were responsible for the construction of the quasiparticle side of the theories of these very special low-temperature behaviors: Lev Landau and John Bardeen. Curiously enough they both partially ignored and partially downplayed the importance of the condensate. In both cases, this neglect of the actual superfluid or superconducting flow interfered with their ability to understand the implications of the theory they had created. They then had difficulty assessing the important advances that occurred immediately after their own great work.

Some speculations are offered about the source of this unevenness in the judgments of these two leading scientists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. A good general reference to the development of this part of science is [41, 42]. A predecessor that carefully assesses the helium work is Sébastien Balibar’s The Discovery of Superfluidity [8]. When he and I overlap, our conclusions are much the same and were reached independently. The outline for much of this paper was suggested by the late Allan Griffin [37] in his introduction to a Varenna volume on Bose–Einstein condensation. Mistakes and errors of judgment are my own rather than Allan’s, of course.

  2. Helium II is the name for the state of helium below the temperature for its transition to superfluidity.

  3. The technical name for the magnetic response with this kind of rigidity is diamagnetism. So London is saying that a superconductor is like a big diamagnetic atom.

  4. The interaction between Tisza and Fritz London in the period 1937–1939 is described in detail in [8, pp. 454–456].

  5. See for example [7, 38] for general references to condensate behavior.

  6. In this paper, I discuss the condensate as if it were always one and only one mode of oscillation, macroscopically occupied. This picture applies in three or higher dimensions. In two dimensions, however, the condensate is spread out over a whole collection of modes. The key descriptors of the condensate are the quasi-particle energy of the condensate and its wave function Ψ(r). The wave function is only relevant above two dimensions and will only be used to describe the condensate after it is invented by de Broglie and Schrödinger in about 1926.

  7. An quasiparticle is a long-lived, particle-like, excitation in a many-body system. Some people would reserve the word for a fermionic mode and call a bosonic mode a collective excitation. Since the theory of the two kinds of excitations are quite similar, I here use quasiparticle to refer to both.

  8. Recently G. Baym and C. Pethick [17] have argued that the Landau criterion is neither necessary nor sufficient for superfluidity by pointing to counterexamples of both types. They assert that the criterion does work to describe the possible reduction of superfluidity via the loss of momentum in collisions, but that this loss can have the modest result of converting a fraction of the superfluid component of the liquid into the normal fluid rather than the dramatic result of destroying the superfluidity.

  9. To complete the argument by describing the magnetic perturbation that might exist at non-zero temperatures, one would envision multiplying both sides of a quantum density matrix by factors like that in Eq. (2). This step is taken in a later paper by Ginzburg and Landau [63] described in Sect. 4.1 below.

  10. This strategy of taking the noninteracting system to be the template for the construction of a quasiparticle theory, the latter being modified to include a more general energy momentum relation, is exactly the one later followed by Landau in his later construction of a quasiparticle theory of 3He [59, 60].

  11. Part of Landau’s trouble with Tisza seems to be contained in the word “normal” as in “normal fluid”. They appear to use the word differently so that what Tisza is saying is hard for Landau to interpret.

  12. BCS could have reminded the reader that the 1946 paper of N.N. Bogoliubov [20] contained a very similar form of excitation. They did not do so. This failure pushed the reader away from looking at the analogy between superfluids and superconductors.

  13. Note the historical continuity in which Δ is the symbol used by both Landau [5355, 61] and BCS to describe the gap in the spectrum, which then plays a crucial role in the Landau criterion for superfluidity.

  14. It is important to the BCS arguments that the transition not be first order in nature. First order phase transitions permit and entail jumps in behavior. Second order ones introduce new behavior at the phase transition, but do so gradually. BCS expect continuity at the phase transition.

  15. In unpublished work, Kurt Gottfried and I showed that the region of applicability of mean field theory does not include a small range of temperatures near the critical temperature for onset of superconductivity. However, the range of non-applicability is so narrow as to be irrelevant in almost all studies of bulk properties of simple superconducting metals.

  16. In my papers [45, 46], I incorrectly assumed that the 1935-7 Landau work made provision for the spatial dependence of the order parameter by including a term in ∇2 applied to that parameter. It did not.

  17. This paragraph and this misprint was pointed out to me by Pierre Hohenberg. The definition of the wave function is given in terms of the quantum density matrix \(\rho(\mathbf{r}_{1},\mathbf{r}_{2}, \ldots, \mathbf {r}_{N}; \mathbf{r}'_{1},\mathbf{r}'_{2}, \ldots, \mathbf{r}'_{N} ) \). The corrected definition is

    $$\varPsi(\mathbf{R}) \varPsi\bigl(\mathbf{R}'\bigr) \sim\int d \mathbf {r}_2,d\mathbf{r}_3, \ldots, d \mathbf{r}_N \rho\bigl(\mathbf {R},\mathbf{r}_2, \ldots, \mathbf{r}_N; \mathbf{R'},\mathbf{r}_2, \ldots, \mathbf{r}_N \bigr) $$

    for the limiting case in which the distance between R and R′ becomes very large.

  18. This tone might be explained by the fact that in the absence of the idea of pairing, one could not see how the fermions (i.e. electrons) involved in superconductivity might exhibit ODLRO.

  19. Specifically, BCS had constructed a theory of weak-coupling electronic superconductivity in situations with time-reversal invariance. This theory must be modified for other cases. For example, it fails in the presence of magnetic impurities and also for the subsequently discovered high temperature superconductors. Nobody knows how to do the analog of BCS for these high T c materials.

  20. Feynman’s vortex predictions [27] were preceded by Lars Onsager’s [77] and followed by estimates of the size of interaction effects in helium II by Penrose and Onsager [81].

References

  1. Abrikosov, A.A.: Dokl. Akad. Nauk SSSR 86, 489 (1952)

    Google Scholar 

  2. Abrikosov, A.A.: Zh. Eksp. Teor. Fiz. 32, 1442 (1957)

    Google Scholar 

  3. Abrikosov, A.A.: Sov. Phys. JETP 5, 1174 (1957)

    Google Scholar 

  4. Abrikosov, A.A.: My years with Landau. Phys. Today 26, 56–60 (1973)

    Article  ADS  Google Scholar 

  5. Allen, J.F., Misener, A.D.: Flow of liquid helium II. Nature 142(3597), 643 (1938)

    Article  ADS  Google Scholar 

  6. Anderson, P.W.: Phys. Rev. 112, 1900–1916 (1958)

    Article  MathSciNet  ADS  Google Scholar 

  7. Annett, J.F.: Superconductivity, Superfluidity, and Condensates. Oxford University Press, New York (2004)

    Google Scholar 

  8. Balibar, S.: The discovery of superfluidity. J. Low Temp. Phys. 146, 441–470 (2007)

    Article  ADS  Google Scholar 

  9. Bardeen, J.: Theory of meissner effect in superconductors. Phys. Rev. 97, 1724–1725 (1955)

    Article  ADS  Google Scholar 

  10. Bardeen, J.: Two fluid model of superconductivity. Phys. Rev. Lett. 1, 399–400 (1958)

    Article  ADS  Google Scholar 

  11. Bardeen, J.: Tunneling from a many particle point of view. Phys. Rev. Lett. 6, 57–59 (1961)

    Article  ADS  Google Scholar 

  12. Bardeen, J.: Quantization of flux in a superconducting cylinder. Phys. Rev. Lett. 7, 162–163 (1961)

    Article  ADS  Google Scholar 

  13. Bardeen, J.: Tunneling into superconductors. Phys. Rev. Lett. 9, 147–149 (1962)

    Article  ADS  MATH  Google Scholar 

  14. Bardeen, J., Pines, D.: Electron-phonon interaction in metals. Phys. Rev. 99, 1140–1150 (1955). See [83, p. 367]

    Article  ADS  MATH  Google Scholar 

  15. Bardeen, J., Cooper, L., Schrieffer, J.R.: Microscopic theory of superconductivity. Phys. Rev. 106, 162–165 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  16. Bardeen, J., Cooper, L., Schrieffer, J.R.: Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957). Also [83, p. 350]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Baym, G., Pethick, C.J.: Landau critical velocity in weakly interacting Bose gases. Phys. Rev. A 86, 023602 (2012)

    Article  ADS  Google Scholar 

  18. Blatt, J.M., Butler, S.T., Schafroth, M.R.: Phys. Rev. 100, 481 (1955)

    Article  MathSciNet  ADS  Google Scholar 

  19. Bloch, F.: Über die Quantenmechanik der Elektronen in Kristallgittern. Z. Phys. 52, 555–600 (1928)

    ADS  MATH  Google Scholar 

  20. Bogoliubov, N.N.: On the theory of superfluidity. J. Phys. 40, 23–32 (1947). Also [83, p. 202]

    Google Scholar 

  21. Bohm, D., Pines, D.: A collective description of electron interactions. Phys. Rev. 92, 609–625 (1953)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Bose, S.N.: Plancks Gesetz und Lichtquantenhypothese. Z. Phys. 26, 178 (1924)

    Article  ADS  MATH  Google Scholar 

  23. Cohen, M.H., Falicov, L., Phillips, J.C.: Superconductive tunneling. Phys. Rev. Lett. 8, 316 (1962)

    Article  ADS  MATH  Google Scholar 

  24. Cooper, L.: Bound electron pairs in a degenerate Fermi gas. Phys. Rev. 104, 1189–1190 (1956). See [83, p. 350]

    Article  ADS  MATH  Google Scholar 

  25. Einstein, A.: Strahlungs-emission und -absorption nach der Quantentheorie. Verh. Dtsch. Phys. Ges. 18, 318–323 (1916)

    Google Scholar 

  26. Einstein, A.: Quantentheorie des einatomigen idealen gases. Sitz.ber. Preuss. Akad. Wiss. 1, 3 (1925)

    Google Scholar 

  27. Feynman, R.P.: Application of quantum mechanics to liquid helium. Prog. Low Temp. Phys. 1, 17–53 (1955)

    Article  Google Scholar 

  28. Gavroglu’s, K., scientific biography, a.: Fritz London, a Scientific Biography. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  29. Giaever, I.: Energy gap in superconductors measured by electron tunneling. Phys. Rev. Lett. 5(4), 147 (1960)

    Article  ADS  Google Scholar 

  30. Giaever, I.: Electron tunneling between two superconductors. Phys. Rev. Lett. 5(10), 464 (1960)

    Article  ADS  Google Scholar 

  31. Giaever, I.: Electron tunneling and superconductivity. Rev. Mod. Phys. 46(2), 245 (1974)

    Article  ADS  Google Scholar 

  32. Glauber, R.J.: Coherent and incoherent states of radiation field. Phys. Rev. 131, 2766–2788 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  33. Gor’kov, L.: J. Exptl. Theoret. Phys. U.S.S.R. 34, 505 (1958). Translation: Sov. Phys. JETP 7, 505 (1958)

    Google Scholar 

  34. Gor’kov, L.: J. Exp. Theor. Phys. USSR 36, 1918 (1959). Translation: Sov. Phys. JETP 9, 1364 (1959)

    Google Scholar 

  35. Gorter, C.J., Casimir, H.G.B.: Phys. Z. Sowjetunion 35, 963 (1934)

    Google Scholar 

  36. Gorter, C.J., Casimir, H.G.B.: Z Tech. Physik. 15, 539 (1934)

    Google Scholar 

  37. Griffin, A.: A brief history of our understanding of BEC: from Bose to Belieav. In: Bose Einstein Condensation in Atomic Gases. Varenna Meeting, Societa Italiana di Fisica, pp. 1–13 (1999)

    Google Scholar 

  38. Griffin, A., Snoke, D.W., Stringari, S.: Bose–Einstein Condensation. Cambridge University Press, New York (1996)

    Google Scholar 

  39. Grimberg, G., Pauls, W., Frisch, U.: Genesis of d’Alembert’s paradox and analytical elaboration of the drag problem. Physica D 237(14–17), 1878–1886 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Hoch, P.: The development of the band theory of solids. In: Hoddeson, L., Braun, E., Teichmann, J., Wert, S. (eds.) Out of the Crystal Maze, pp. 182–235. Oxford University Press, Oxford (1992). Wiley, New York (1975)

    Google Scholar 

  41. Hoddeson, L., Braun, E., Teichmann, J., Wert, S. (eds.): Out of the Crystal Maze. Oxford University Press, Oxford (1992)

    Google Scholar 

  42. Hoddeson, L., Schubert, H., Heims, S.J., Baym, G.: Collective Phenomena pp. 489–617 (1992)

    Google Scholar 

  43. Josephson, B.: Possible new effects in superconductive tunnelling. Phys. Lett. 1, 251 (1962)

    Article  ADS  MATH  Google Scholar 

  44. Jurkowitz, E.: Thesis, Interpreting Superconductivity: The History of Quantum Theory and the Theory of Superconductivity and Superfluidity, University of Toronto (1995)

  45. Kadanoff, L.: More is the same; mean field theory and phase transitions. J. Stat. Phys. 137, 777–797 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. Kadanoff, L.P.: Theories of Matter: Infinities and Renormalization. In: Batterman, R. (ed.) The Oxford Handbook of the Philosophy of Physics. Oxford University Press, Oxford (2013)

    Google Scholar 

  47. Kadanoff, L.: Relating Theories via Renormalization. Stud. Hist. Philos. Mod. Phys. (2013, to be published)

  48. Kahn, B., Uhlenbeck, G.E.: On the theory of condensation. Physica 4, 1155–1156 (1937)

    Article  ADS  Google Scholar 

  49. Kahn, B., Uhlenbeck, G.E.: On the theory of condensation. Physica 5, 399–416 (1938)

    Article  ADS  Google Scholar 

  50. Kapitza, P.: Viscosity of liquid helium below the λ-point. Nature 141(3558), 74 (1938)

    Article  ADS  Google Scholar 

  51. Landau, L.D.: Phys. Z. Sowjetunion 8, 113 (1935). Translation in ter Haar, D. (ed.) Collected papers of L.D. Laudau, pp. 96–100. Gordon & Breach, New York (1965)

    MATH  Google Scholar 

  52. Landau, L.D.: Zh. Eksp. Teor. Fiz., 7, 19–32 (1937). Translation in ter Haar, D. (ed.) Collected papers of L.D. Laudau, pp. 193–216. Gordon & Breach, New York (1965)

    Google Scholar 

  53. Landau, L.: J. Exp. Theor. Phys. 11, 592 (1941) (in Russian)

    Google Scholar 

  54. Landau, L.: Physiol. J. USSR 5, 71–90 (1941) (in English)

    Google Scholar 

  55. Landau, L.: Phys. Rev. 60(4), 356–358 (1941)

    Article  ADS  MATH  Google Scholar 

  56. Landau, L.D.: On the theory of supefluidity of helium II. J. Phys. 11, 91 (1947) (USSR)

    Google Scholar 

  57. Landau, L.: Doklady 61, 253 (1948)

    MATH  Google Scholar 

  58. Landau, L.: On the theory of superfluidity. Phys. Rev. 75, 884 (1949)

    Article  ADS  Google Scholar 

  59. Landau, L.D.: Sov. Phys. JETP 3, 920 (1957)

    MATH  Google Scholar 

  60. Landau, L.D.: Sov. Phys. JETP 5, 101 (1957)

    MATH  Google Scholar 

  61. Landau, L.: On the theory of superfluidity of helium II. In: Khlatnikov, L.N. (ed.) An Introduction to the Theory of Superfluidity, pp. 185–204. Benjamin, New York (1965). Translator Pierre C. Hohenberg

    Google Scholar 

  62. Landau, L.: On the theory of superfluidity In: ter Haar, D. (ed.) Collected Papers of L.D. Landau, pp. 474–477. Gordon & Breach, New York (1965)

    Google Scholar 

  63. Landau, L., Ginzburg, V.: On the theory of superconductivity. In: ter Haar, D. (ed.) Collected Papers of L.D. Landau, pp. 546–568. Gordon & Breach, New York (1965)

    Google Scholar 

  64. Langer, J., Ambegaokar, V.: Phys. Rev. 164, 498 (1967)

    Article  ADS  Google Scholar 

  65. Langer, J., Fisher, M.: Phys. Rev. Lett. 19, 560 (1967)

    Article  ADS  Google Scholar 

  66. le Rond d’Alembert, J.: In: Memoir XXXIV. Opuscules Mathématiques, vol. 5, pp. 132–138, first edn. (1768)

    Google Scholar 

  67. London, F.: Macroscopic interpretation of supraconductivity. Proc. R. Soc. 152, 24–34 (1935)

    Google Scholar 

  68. London, H.: Thermodynamics of the thermomechanical effect in liquid helium. Proc. R. Soc. A 171, 484 (1939)

    Article  ADS  MATH  Google Scholar 

  69. London, F.: Superfluids, vol. 1. Dover, New York (1960)

    Google Scholar 

  70. London, F.: Superfluids, vol. II. Dover, New York (1964)

    Google Scholar 

  71. London, F., London, H.: Proc. R. Soc. Lond. Ser. A 149, 71 (1935)

    Article  ADS  MATH  Google Scholar 

  72. McCumber, D.E., Halperin, B.I.: Phys. Rev. B 1, 1054 (1970)

    Article  ADS  Google Scholar 

  73. McDonald, D.G.: The Nobel Laureate vs the graduate student. In: Physics today, pp. 46–50 (2001)

    Google Scholar 

  74. Meissner, W., Ochsenfeld, R.: Ein neuer Effekt bei Eintritt der Supraleitfähigkei. Naturwissenschaften 21(44), 787–788 (1933)

    Article  ADS  Google Scholar 

  75. Ogg, R.A. Jr.: Bose–Einstein condensation of trapped electron pairs. phase separation and super- conductivity of metal-ammonia solutions. Phys. Rev. 69, 243–244 (1946)

    Article  ADS  Google Scholar 

  76. Onnes, H.K.: The resistance of pure mercury at helium temperatures. Commun. Phys. Lab. Univ. Leiden 12, 120 (1911)

    Google Scholar 

  77. Onsager, L.: Statistical hydrodynamics. Nuovo Cimento 6, 279–287 (1949)

    Article  MathSciNet  Google Scholar 

  78. Ornstein, L.S., Zernike, F.: Proc. Acad. Sci. Amsterdam 17, 793 (1914)

    Google Scholar 

  79. Ornstein, L.S., Zernike, F.: Proc. Acad. Sci. Amsterdam 18, 1520 (1916)

    Google Scholar 

  80. Penrose, O.: On the quantum mechanics of helium II. Philos. Mag. 42, 1373 (1951)

    MATH  Google Scholar 

  81. Penrose, O., Onsager, L.: Bose–Einstein condensation and liquid helium. Phys. Rev. 104, 576–584 (1956)

    Article  ADS  MATH  Google Scholar 

  82. Penrose, O., Onsager, L.: Bose–Einstein condensation and liquid helium. Phys. Rev. 104, 576–584 (1956)

    Article  ADS  MATH  Google Scholar 

  83. Pines, D.: In: The Many-Body Problem. Benjamin, New York (1961). Includes many important reprints

    Google Scholar 

  84. Schafroth, M.R.: Phys. Rev. 96, 1149–1442 (1954)

    Article  ADS  Google Scholar 

  85. Schafroth, M.R.: Phys. Rev. 100, 502 (1955)

    Article  MathSciNet  ADS  Google Scholar 

  86. Schafroth, M.R., Butler, S.T., Blatt, J.M.: Helv. Phys. Acta 30, 93 (1957)

    MathSciNet  Google Scholar 

  87. Schwinger, J.: Theory of quantized fields. III. Phys. Rev. 91, 728–740 (1953)

    Article  MathSciNet  ADS  Google Scholar 

  88. Schwinger, J.: Private communication (1959)

  89. Tisza, L.: La viscosite de Phelium liquide et la statistique de Bose–Einstein. C. R. 207, 1035–1186 (1938)

    Google Scholar 

  90. Tisza, L.: Transport phenomena in helium-II. Nature 141, 913 (1938)

    Article  ADS  Google Scholar 

  91. Tisza, L.: Sur la supraconductibilite thermique de …application a l’helium liquide. J. Phys. Radium 1, 350 (1940)

    Article  Google Scholar 

  92. Uhlenbeck, G.E.: Thesis, Leiden (1927)

  93. Yang, C.N.: Concept of off-diagonal long-range order and the quantum phases of liquid He and superconductors. Rev. Mod. Phys. 34, 694–704 (1962)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the University of Chicago NSF-MRSEC under grant number DMR-0820054. I have had instructive conversations on the topics of this paper with David Pines, Silvan Schweber, Gloria Lubkin, Gordon Baym, Edward Jurkowitz, Margaret Morrison, Joel Lebowitz, Roy Glauber, Sébastien Balibar, Humphrey Maris, Pierre Hohenberg, William Irvine, and Paul Martin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo P. Kadanoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kadanoff, L.P. Slippery Wave Functions. J Stat Phys 152, 805–823 (2013). https://doi.org/10.1007/s10955-013-0795-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-013-0795-8

Keywords

Navigation