Skip to main content
Log in

Extremes of N Vicious Walkers for Large N: Application to the Directed Polymer and KPZ Interfaces

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We compute the joint probability density function (jpdf) P N (M,τ M ) of the maximum M and its position τ M for N non-intersecting Brownian excursions, on the unit time interval, in the large N limit. For N→∞, this jpdf is peaked around \(M = \sqrt{2N}\) and τ M =1/2, while the typical fluctuations behave for large N like \(M - \sqrt{2N} \propto s N^{-1/6}\) and τ M −1/2∝wN −1/3 where s and w are correlated random variables. One obtains an explicit expression of the limiting jpdf P(s,w) in terms of the Tracy-Widom distribution for the Gaussian Orthogonal Ensemble (GOE) of Random Matrix Theory and a psi-function for the Hastings-McLeod solution to the Painlevé II equation. Our result yields, up to a rescaling of the random variables s and w, an expression for the jpdf of the maximum and its position for the Airy2 process minus a parabola. This latter describes the fluctuations in many different physical systems belonging to the Kardar-Parisi-Zhang (KPZ) universality class in 1+1 dimensions. In particular, the marginal probability density function (pdf) P(w) yields, up to a model dependent length scale, the distribution of the endpoint of the directed polymer in a random medium with one free end, at zero temperature. In the large w limit one shows the asymptotic behavior logP(w)∼−w 3/12.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The factor 2−9/2 in the formula (9) ensures the normalization of the jpdf P(s,w).

  2. To avoid any confusion we have used a notation for this psi-function which is different from the one used in Refs. [16, 38, 72]. Indeed Φ 1 and Φ 2 that we use here actually correspond to Φ 1 and Φ 2 used in Refs. [16, 38, 72].

  3. We thank J. Krug and J. Rambeau for pointing out these references [56, 57].

References

  1. Halpin-Healy, T., Zhang, Y.C.: Kinetic roughening phenomena, stochastic growth, directed polymers and all that. Phys. Rep. 254, 215 (1995)

    Article  ADS  Google Scholar 

  2. Huse, D.A., Henley, C.L.: Pinning and roughening of domain walls in Ising systems due to random impurities. Phys. Rev. Lett. 54, 2708 (1985)

    Article  ADS  Google Scholar 

  3. Kardar, M.: Depinning by quenched randomness. Phys. Rev. Lett. 55, 2235 (1985)

    Article  ADS  Google Scholar 

  4. Kardar, M., Parisi, G., Zhang, Y.C.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889 (1986)

    Article  ADS  MATH  Google Scholar 

  5. Forster, D., Nelson, D.R., Stephen, M.J.: Large-distance and long-time properties of a randomly stirred fluid. Phys. Rev. A 16, 732 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  6. Mézard, M.: On the glassy nature of random directed polymers in two dimensions. J. Phys. (Paris) 51, 1831 (1990)

    Google Scholar 

  7. Hwa, T., Lässig, M.: Similarity detection and localization. Phys. Rev. Lett. 76, 2591 (1996)

    Article  ADS  Google Scholar 

  8. Lemerle, S., Ferré, J., Chappert, C., Mathet, V., Giamarchi, T., Le Doussal, P.: Domain wall creep in an Ising ultrathin magnetic film. Phys. Rev. Lett. 80, 849 (1998)

    Article  ADS  Google Scholar 

  9. Moulinet, S., Rosso, A., Krauth, W., Rolley, E.: Width distribution of contact lines on a disordered substrate. Phys. Rev. E 69, 035103(R) (2004)

    Article  ADS  Google Scholar 

  10. Johansson, K.: Discrete polynuclear growth and determinantal processes. Commun. Math. Phys. 242, 277 (2003)

    MathSciNet  ADS  MATH  Google Scholar 

  11. Tracy, C.A., Widom, H.: On orthogonal and symplectic matrix ensembles. Commun. Math. Phys. 177, 727 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Krug, J., Meakin, P., Halpin-Healy, T.: Amplitude universality for driven interfaces and directed polymers in random media. Phys. Rev. A 45, 638 (1992)

    Article  ADS  Google Scholar 

  13. Baik, J., Rains, E.: Symmetrized random permutations. In: Bleher, P., Its, A. (eds.) Random Matrix Models and Their Applications. MSRI Publications, vol. 40. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  14. Prähofer, M., Spohn, H.: Universal distributions for growth processes in 1+1 dimensions and random matrices. Phys. Rev. Lett. 84, 4882 (2000)

    Article  ADS  Google Scholar 

  15. Forrester, P.J., Majumdar, S.N., Schehr, G.: Non-intersecting Brownian walkers and Yang-Mills theory on the sphere. Nucl. Phys. B 844, 500 (2011). Erratum: Nucl. Phys. B 857, 424 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Liechty, K.: Nonintersecting Brownian excursions on the half-line and discrete Gaussian orthogonal polynomials. J. Stat. Phys. 147(3), 582 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Moreno Flores, G.R., Quastel, J., Remenik, D.: Endpoint distribution of directed polymers in 1+1 dimensions. Preprint. arXiv:1106.2716

  18. Johansson, K.: Shape fluctuations and random matrices. Commun. Math. Phys. 209, 437 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Prähofer, M., Spohn, H.: Scale invariance of the PNG droplet and the Airy process. J. Stat. Phys. 108, 1071 (2002)

    Article  MATH  Google Scholar 

  20. Tracy, C.A., Widom, H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159, 151–174 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Baik, J., Deift, P., Johansson, K.: On the distribution of the length of the longest increasing subsequence of random permutations. J. Am. Math. Soc. 12, 1119 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Majumdar, S.N.: Random matrices, the Ulam problem, directed polymers and growth models, and sequence matching. In: Bouchaud, J.-P., Mézard, M., Dalibard, J. (eds.) Complex Systems. Les Houches Lecture Notes, p. 179. Elsevier, Amsterdam (2007)

    Chapter  Google Scholar 

  23. Calabrese, P., Le Doussal, P., Rosso, A.: Free-energy distribution of the directed polymer at high temperature. Europhys. Lett. 90, 20002 (2010)

    Article  ADS  Google Scholar 

  24. Dotsenko, V.: Bethe ansatz derivation of the Tracy-Widom distribution for one-dimensional directed polymers. Eutrophys. Lett. 90, 20003 (2010)

    Article  ADS  Google Scholar 

  25. Dotsenko, V.: Replica Bethe ansatz derivation of the Tracy-Widom distribution of the free energy fluctuations in one-dimensional directed polymers. J. Stat. Mech., P07010 (2010)

  26. Sasamoto, T., Spohn, H.: The one-dimensional KPZ equation: an exact solution and its universality. Phys. Rev. Lett. 104, 230602 (2010)

    Article  ADS  Google Scholar 

  27. Sasamoto, T., Spohn, H.: Exact height distributions for the KPZ equation with narrow wedge initial condition. Nucl. Phys. B 834, 523 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Sasamoto, T., Spohn, H.: The 1+1-dimensional Kardar-Parisi-Zhang equation and its universality class. J. Stat. Phys. 140, 209 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Amir, G., Corwin, I., Quastel, J.: Probability distribution of the free energy of the continuum directed random polymer in 1+1 dimensions. Commun. Pure Appl. Math. 64, 466 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Prolhac, S., Spohn, H.: Two-point generating function of the free energy for a directed polymer in a random medium. J. Stat. Mech., P01031 (2011)

  31. Prolhac, S., Spohn, H.: The one-dimensional KPZ equation and the Airy process. J. Stat. Mech., P03020 (2011)

  32. Calabrese, P., Le Doussal, P.: An exact solution for the KPZ equation with flat initial conditions. Phys. Rev. Lett. 106, 250603 (2011)

    Article  ADS  Google Scholar 

  33. Le Doussal, P., Calabrese, P.: The KPZ equation with flat initial condition and the directed polymer with one free end. J. Stat. Mech., P06001 (2012)

  34. Ferrari, P.L., Spohn, H.: A determinantal formula for the GOE Tracy-Widom distribution. J. Phys. A: Math. Gen. 38, L557 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  35. Tracy, C.A., Widom, H.: Nonintersecting Brownian excursions. Ann. Appl. Probab. 17(3), 953 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Corwin, I., Hammond, A.: Brownian Gibbs property for Airy line ensembles. arXiv:1108.2291

  37. Flaschka, H., Newell, A.C.: Monodromy and spectrum-preserving deformations I. Commun. Math. Phys. 76(1), 65 (1980)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. Bleher, P., Its, A.: Double scaling limit in the random matrix model: the Riemann-Hilbert approach. Commun. Pure Appl. Math. 56, 433 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  39. Abramowitz, M., Stegun, I. (eds.): Handbook of Mathematical Functions, 10th edn. National Bureau of Standards, Washington (1972)

    MATH  Google Scholar 

  40. Schehr, G., Majumdar, S.N., Comtet, A., Randon-Furling, J.: Exact distribution of the maximal height of p vicious walkers. Phys. Rev. Lett. 101, 150601 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  41. Rambeau, J., Schehr, G.: Extremal statistics of curved growing interfaces in 1+1 dimensions. Europhys. Lett. 91, 60006 (2010)

    Article  ADS  Google Scholar 

  42. Rambeau, J., Schehr, G.: Distribution of the time at which N vicious walkers reach their maximal height. Phys. Rev. E 83, 061146 (2011)

    Article  ADS  Google Scholar 

  43. Katori, M., Izumi, M., Kobayashi, N.: Two Bessel bridges conditioned never to collide, double Dirichlet series, and Jacobi theta function. J. Stat. Phys. 131, 1067 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. Kobayashi, N., Izumi, M., Katori, M.: Maximum distributions of bridges of noncolliding Brownian paths. Phys. Rev. E 78, 051102 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  45. Feierl, T.: The height of watermelons with wall. J. Phys. A: Math. Theor. 45, 095003 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  46. Gross, D.J., Matytsin, A.: Instanton induced large N phase transitions in two and four dimensional QCD. Nucl. Phys. B 429, 50 (1994)

    Article  ADS  Google Scholar 

  47. Crescimanno, M., Naculich, S.G., Schnitzer, H.J.: Evaluation of the free energy of two-dimensional Yang-Mills theory. Phys. Rev. D 54, 1809 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  48. de Haro, S., Tierz, M.: Brownian motion, Chern-Simons theory, and 2d Yang-Mills. Phys. Lett. B 601, 201 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  49. Gross, D.J., Witten, E.: Possible third-order phase transition in the large-n lattice gauge limit. Phys. Rev. D 21, 446 (1980)

    Article  ADS  Google Scholar 

  50. Wadia, S.R.: N=1 phase transition in a class of exactly soluble model lattice gauge theories. Phys. Lett. B 93, 403 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  51. Douglas, M.R., Kazakov, V.A.: Large N phase transition in continuum QCD2. Phys. Lett. B 319, 219 (1993)

    Article  ADS  Google Scholar 

  52. Periwal, V., Shevitz, D.: Unitary-matrix models as exactly solvable string theories. Phys. Rev. Lett. 64, 1326 (1990)

    Article  ADS  Google Scholar 

  53. Bouchaud, J.-P., Orland, H.: On the Bethe ansatz for random directed polymers. J. Stat. Phys. 61, 877 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  54. Le Doussal, P., Monthus, C.: Exact solutions for the statistics of extrema of some random 1D landscapes, application to the equilibrium and the dynamics of the toy model. Physica A 317, 140 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  55. Groeneboom, P.: Brownian motion with a parabolic drift and Airy functions. Probab. Theory Relat. Fields 81, 31 (1989).

    Article  MathSciNet  Google Scholar 

  56. Halpin-Healy, T.: Directed polymers in random media: probability distributions. Phys. Rev. A 44, R3415 (1991)

    Article  ADS  Google Scholar 

  57. Goldschmidt, Y.Y., Blum, T.: Directed polymers in a random medium: universal scaling behavior of the probability distribution. Phys. Rev. E 47, R2979 (1993)

    Article  ADS  Google Scholar 

  58. Kriecherbauer, T., Krug, J.: A pedestrian’s view on interacting particle systems, KPZ universality, and random matrices. J. Phys. A: Math. Theor. 43, 403001 (2010)

    Article  MathSciNet  Google Scholar 

  59. Takeuchi, K.A., Sano, M.: Universal fluctuations of growing interfaces: evidence in turbulent liquid crystals. Phys. Rev. Lett. 104, 230601 (2010)

    Article  ADS  Google Scholar 

  60. Takeuchi, K.A., Sano, M., Sasamoto, T., Spohn, H.: Growing interfaces uncover universal fluctuations behind scale invariance. Sci. Rep. (Nature) 1, 34 (2011)

    Google Scholar 

  61. Takeuchi, K.A., Sano, M.: Evidence for geometry-dependent universal fluctuations of the Kardar-Parisi-Zhang interfaces in liquid-crystal turbulence. J. Stat. Phys. 147, 853 (2012)

    Article  ADS  MATH  Google Scholar 

  62. de Gennes, P.-G.: Soluble models for fibrous structures with steric constraints. J. Chem. Phys. 48, 2257 (1968)

    Article  ADS  Google Scholar 

  63. Nadal, C., Majumdar, S.N.: A simple derivation of the Tracy-Widom distribution of the maximal eigenvalue of a Gaussian unitary random matrix. J. Stat. Mech., P04001 (2011)

  64. Szegö, G.: Orthogonal Polynomials, 4th edn. Am. Math. Soc., Providence (1975)

    MATH  Google Scholar 

  65. Plancherel, M., Rotach, W.: Sur les valeurs asymptotiques des polynômes d’Hermite. Comment. Math. Helv. 1, 227 (1929)

    Article  MathSciNet  MATH  Google Scholar 

  66. Mehta, M.L.: Random Matrices. Academic Press, New York (1991)

    MATH  Google Scholar 

  67. Forrester, P.J.: Log-Gases and Random Matrices. Princeton University Press, Princeton (2010)

    MATH  Google Scholar 

  68. Bertola, M., Eynard, B., Harnad, J.: Partition functions for matrix models and isomonodromic tau functions. J. Phys. A 36, 3067 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  69. Majumdar, S.N.: private communication

  70. Prähofer, M., Spohn, H.: Exact scaling functions for one-dimensional stationary KPZ growth. J. Stat. Phys. 115(1–2), 255 (2004)

    Article  ADS  MATH  Google Scholar 

  71. Forrester, P.J.: Probability densities and distributions for spiked Wishart β-ensembles. arXiv:1101.2261

  72. Claeys, T.: Universality in critical random matrix ensembles and pole-free solutions of Painlevé equations. PhD thesis, Katholieke Universiteit Leuven (2006)

  73. Quastel, J., Remenik, D.: Tails of the endpoint distribution of directed polymers. http://arxiv.org/abs/1203.2907

  74. Baik, J., Liechty, K., Schehr, G.: On the joint distribution of the maximum and its position of the Airy2 process minus a parabola. J. Math. Phys. 53, 083303 (2012)

    Article  ADS  Google Scholar 

  75. Baik, J., Buckingham, R., DiFranco, J.: Asymptotics of Tracy-Widom distributions and the total integral of a Painlevé II function. Commun. Math. Phys. 280(2), 463 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  76. Borot, G., Eynard, B., Majumdar, S.N., Nadal, C.: Large deviations of the maximal eigenvalue of random matrices. J. Stat. Mech., P11024 (2011)

Download references

Acknowledgements

It is a pleasure to thank A. Comtet, P.J. Forrester, S.N. Majumdar and J. Rambeau for our fruitful collaborations on this subject and K. Takeuchi for sharing his experimental data. I would also like to acknowledge K. Johansson, J. Krug for stimulating discussions, T. Claeys, A. Its and in particular K. Liechty for very useful correspondence. This research was supported by ANR grant 2011-BS04-013-01 WALKMAT and in part by the Indo-French Centre for the Promotion of Advanced Research under Project 4604-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grégory Schehr.

Appendix: Asymptotic Behavior of the Marginal Probability Density Function P(w)

Appendix: Asymptotic Behavior of the Marginal Probability Density Function P(w)

In this appendix, we study the asymptotic behavior of the (marginal) pdf P(w) of the position of the maximum. The starting point of our analysis is the formula given in the text in Eq. (134), which we recall here

(137)

We first obtain the leading behaviors of f(x,w) and f(x,−w) (125) by estimating the small and large ζ behavior, respectively, of Φ 2(ζ,x).

One can obtain the small ζ behavior of Φ 2(ζ,x) by analyzing the coupled equations for Φ 1(ζ,x),Φ 2(ζ,x) in (112), (113) and using that Φ 1(−ζ,x)=Φ 1(ζ,x) while Φ 2(−ζ,x)=−Φ 2(ζ,x). One obtains

(138)
(139)

where at this stage the constants C and D remain undetermined. The large w>0 behavior of f(x,w) is then given by

(140)

The constants C and D can then be obtained by extracting the large x behavior of the above expression (140) and matching it with the large w expansion of the expression given in Eq. (104), assuming that the limits w→∞ and x→∞ do commute. When x→∞ the integral over z in Eq. (140) is diverging and it is easy to see that one has

(141)

Therefore, to leading order in x, for x→∞, one obtains from Eqs. (140) and (141)

(142)

while the expression in Eq. (104) yields

(143)

which, by comparison, yields immediately

(144)

The computation of D is slightly more involved but by comparing Eq. (140) in the large x limit one obtains

(145)

Given that q(y)>0, for all y real, one sees immediately on that expression (145) that D>0.

To compute the asymptotic behavior of f(x,−w) for w→∞ we notice that, in this case, the behavior of the integral over ζ in Eq. (125) is instead dominated by the region ζ→∞ where, to leading order in w, Φ 2(ζ,x) can thus be replaced by its asymptotic behavior given in Eq. (118). Performing the integral over ζ one thus arrives at the expression obtained previously in Eq. (104), with the substitution w→−w from which one has to extract carefully the large w behavior. One obtains

(146)

These asymptotic behaviors in Eqs. (140), (146) suggest to separate the integral over s in Eq. (137) into two parts,

(147)
(148)
(149)

Let us first analyze P +(w) in Eq. (148). There, because of the exponential term e wx/2 coming from (146) one can perform, in the integral over x, the change of variable z=wx to obtain

(150)

where \(\tilde{c}\) can be read from Eqs. (140), (146):

(151)

where we have used the explicit expression of C in Eq. (145). Finally, from Eq. (150) one obtains the large w behavior of P +(w), to leading order as

(152)

Let us now analyze P (w) in Eq. (149), whose analysis turns out to be more complicated. We first notice that \({\mathcal{F}}_{1}(s)\) is bounded for s<0 and in addition, its asymptotic behavior for s→−∞ is given by [75, 76]

(153)

so that there exists a constant K such that

(154)

Therefore one has

(155)

For large w, because of the exponential term e wx/2 in Eq. (146), the integral over s in Eq. (155) is dominated by the region of large negative s. On the other hand, for large negative s, the integral over x is also dominated by the region where x is large and negative. Now using the behavior of q(s) (see e.g. Ref. [75])

(156)

one obtains that, for large negative s, one has

(157)

where d>0 is a constant which can be read from Eqs. (140), (146). Using this last estimate (157), one immediately sees that the large w behavior I (w) in Eq. (155) is given by

(158)

Finally, using the estimates in Eqs. (152) and (158) together with the inequality in Eq. (155) one obtains

(159)

as given in the text (135).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schehr, G. Extremes of N Vicious Walkers for Large N: Application to the Directed Polymer and KPZ Interfaces. J Stat Phys 149, 385–410 (2012). https://doi.org/10.1007/s10955-012-0593-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-012-0593-8

Keywords

Navigation