Skip to main content
Log in

Extremal Theory for Spectrum of Random Discrete Schrödinger Operator. II. Distributions with Heavy Tails

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the asymptotic structure of the first K largest eigenvalues λ k,V and the corresponding eigenfunctions ψ(⋅;λ k,V ) of a finite-volume Anderson model (discrete Schrödinger operator) \(\mathcal{H}_{V}= \kappa \Delta_{V}+\xi(\cdot)\) on the multidimensional lattice torus V increasing to the whole of lattice ℤν, provided the distribution function F(⋅) of i.i.d. potential ξ(⋅) satisfies condition −log(1−F(t))=o(t 3) and some additional regularity conditions as t→∞. For zV, denote by λ 0(z) the principal eigenvalue of the “single-peak” Hamiltonian κΔ V +ξ(z)δ z in l 2(V), and let \(\lambda^{0}_{k,V}\) be the kth largest value of the sample λ 0(⋅) in V. We first show that the eigenvalues λ k,V are asymptotically close to \(\lambda^{0}_{k,V}\). We then prove extremal type limit theorems (i.e., Poisson statistics) for the normalized eigenvalues (λ k,V B V )a V , where the normalizing constants a V >0 and B V are chosen the same as in the corresponding limit theorems for \(\lambda^{0}_{k,V}\). The eigenfunction ψ(⋅;λ k,V ) is shown to be asymptotically completely localized (as V↑ℤ) at the sites z k,V V defined by \(\lambda^{0}(z_{k,V})=\lambda^{0}_{k,V}\). Proofs are based on the finite-rank (in particular, rank one) perturbation arguments for discrete Schrödinger operator when potential peaks are sparse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenman, M., Molchanov, S.A.: Localization at large disorder and at extreme energies: an elementary derivation. Commun. Math. Phys. 157, 245–278 (1993)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Anderson, G.W., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  3. Astrauskas, A.: On high-level exceedances of i.i.d. random fields. Stat. Probab. Lett. 52, 271–277 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Astrauskas, A.: On high-level exceedances of Gaussian fields and the spectrum of random Hamiltonians. Acta Appl. Math. 78, 35–42 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Astrauskas, A.: Strong laws for exponential order statistics and spacings. Lith. Math. J. 46, 385–397 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Astrauskas, A.: Poisson-type limit theorems for eigenvalues of finite-volume Anderson Hamiltonian. Acta Appl. Math. 96, 3–15 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Astrauskas, A.: From extreme values of i.i.d. random fields to extreme eigenvalues of finite-volume Anderson Hamiltonian. Unpublished manuscript (2007). Available at http://www.mii.lt/files/astrauskas_extr.pdf

  8. Astrauskas, A.: Extremal theory for spectrum of random discrete Schrödinger operator. III. Localization properties. Unpublished manuscript (2007). Available at http://www.mii.lt/files/astrauskas_extr.pdf

  9. Astrauskas, A.: Extremal theory for spectrum of random discrete Schrödinger operator. I. Asymptotic expansion formulas. J. Stat. Phys. 131, 867–916 (2008)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Auffinger, A., Ben Arous, G., Péché, S.: Poisson convergence for the largest eigenvalues of heavy tailed random matrices. Ann. Inst. Henri Poincaré Probab. Stat. 45, 589–610 (2009)

    Article  MATH  ADS  Google Scholar 

  11. Ben Arous, G., Guionnet, A.: Wigner Matrices (Chap. 21). Review article (2010). Available at http://www.umpa.ens-lyon.fr/~aguionne/RMTChap21.pdf

  12. Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  13. Biroli, G., Bouchaud, J.-P., Potters, M.: On the top eigenvalue of heavy-tailed random matrices. Europhys. Lett. EPL 78(1), Art 10001, 5 pp (2007)

    Google Scholar 

  14. Biscup, M., König, W.: Eigenvalue order statistics for random Schrödinger operators with double exponential tails (2011, in preparation)

  15. de Haan, L., Ferreira, A.: Extreme Value Theory: An Introduction. Springer, New York (2006)

    MATH  Google Scholar 

  16. Deheuvels, P.: Strong laws for the kth order statistics when kclog2 n. Probab. Theory Relat. Fields 72, 133–154 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  17. Erdös, L.: Universality of Wigner random matrices: a survey of recent results. Russ. Math. Surv. 66, 507–626 (2011)

    Article  MATH  Google Scholar 

  18. Erdös, L., Knowles, A.: Quantum diffusion and eigenfunction delocalization in a random band matrix model. Commun. Math. Phys. 303, 509–554 (2011)

    Article  MATH  ADS  Google Scholar 

  19. Fröhlich, J., Martinelli, F., Scoppola, E., Spencer, T.: Constructive proof of localization in the Anderson tight binding model. Commun. Math. Phys. 101, 21–46 (1985)

    Article  MATH  ADS  Google Scholar 

  20. Galambos, J.: The Asymptotic Theory of Extreme Order Statistics. Wiley, New York (1978)

    MATH  Google Scholar 

  21. Gärtner, J., König, W.: The parabolic Anderson model. In: Deuschel, J.-D., Greven, A. (eds.) Interacting Stohastic Systems, pp. 153–179. Springer, Berlin (2005)

    Chapter  Google Scholar 

  22. Gärtner, J., Molchanov, S.A.: Parabolic problems for the Anderson model. II. Second-order asymptotics and structure of high peaks. Probab. Theory Relat. Fields 111, 17–55 (1998)

    Article  MATH  Google Scholar 

  23. Germinet, F., Klopp, F.: Spectral statistics for random Schrödinger operators in the localized regime. Preprint arXiv:1011.1832v2 (2011)

  24. Grenkova, L.N., Molchanov, S.A., Sudarev, Ju.N.: The structure of the edge of the multidimensional Anderson model spectrum. Theor. Math. Phys. 85(1), 1033–1039 (1990)

    Article  MathSciNet  Google Scholar 

  25. van der Hofstad, R., König, W., Mörters, P.: The universality classes in the parabolic Anderson model. Commun. Math. Phys. 267, 307–353 (2006)

    Article  MATH  ADS  Google Scholar 

  26. van der Hofstad, R., Mörters, P., Sidorova, N.: Weak and almost sure limits for the parabolic Anderson model with heavy tailed potentials. Ann. Appl. Probab. 18, 2450–2494 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  27. Khorunzhiy, O.: High moments of large Wigner matrices and asymptotic properties of the spectral norm. Preprint arXiv:0907.3743. Random Oper. Stoch. Equ. 19 (2011, to appear)

  28. Killip, R., Nakano, F.: Eigenfunction statistics in the localized Anderson model. Ann. Henri Poincaré 8(1), 27–36 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. Kirsch, W.: An invitation to random Schrödinger operator. In: Random Schrödinger operators. Panor. Synth., vol. 25, pp. 1–119. Soc. Math. France, Paris (2008)

    Google Scholar 

  30. König, W., Lacoin, H., Mörters, P., Sidorova, N.: A two cities theorem for the parabolic Anderson model. Ann. Probab. 37, 347–392 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  31. Lacoin, H., Mörters, P.: A scaling limit theorem for the parabolic Anderson model with exponential potential. Preprint arXiv:1009.4862v1 (2010)

  32. Lankaster, P.: Theory of Matrices. Academic Press, London (1969)

    Google Scholar 

  33. Leadbetter, M.R., Lindgren, G., Rootzén, H.: Extremes and Related Properties of Random Sequences and Processes. Springer, New York (1983)

    Book  MATH  Google Scholar 

  34. Minami, N.: Local fluctuation of the spectrum of a multidimensional Anderson tight binding model. Commun. Math. Phys. 177, 709–725 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  35. Molchanov, S.A.: Lectures on random media. In: Lectures on Probability Theory, Ecole d’Eté de Probabilités de Saint-Flour XXII-1992. Lect. Notes in Math., vol. 1581, pp. 242–411. Springer, Berlin (1994)

    Google Scholar 

  36. Molchanov, S., Vainberg, B.: Scattering on the system of the sparse bumps: multidimensional case. Appl. Anal. 71, 167–185 (1998)

    Article  MathSciNet  Google Scholar 

  37. Molchanov, S., Vainberg, B.: Spectrum of multidimensional Schrödinger operators with sparse potentials. In: Santosa, F., Stakgold, I. (eds.) Analytical and Computational Methods in Scattering and Applied Mathematics, pp. 231–253. Chapman and Hall/CRC Press, London/Boca Raton (2000)

    Google Scholar 

  38. Resnick, S.I.: Extreme Values, Regular Variation, and Point Processes. Springer, Berlin (1987)

    MATH  Google Scholar 

  39. Simon, B.: Spectral Analysis of Rank one Perturbations and Applications. CRM Proc. Lecture Notes, vol. 8, pp. 109–149. Am. Math. Soc., Providence (1995)

    Google Scholar 

  40. Sodin, S.: The spectral edge of some random band matrices. Ann. Math. 172, 2223–2251 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  41. Soshnikov, A.: Poisson statistics for the largest eigenvalues of Wigner random matrices with heavy tails. Electron. Commun. Probab. 9, 82–91 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  42. Spencer, T.: Random banded and sparse matrices. In: Akemann, G., Baik, J., Di Francesco, P. (eds.) Oxford Handbook on Random Matrix Theory. Oxford University Press, London (2011). Chap. 23

    Google Scholar 

  43. Stolz, G.: An introduction to mathematics of Anderson localization. Preprint arXiv:1104.2317. Contemp. Math. (2011, to appear)

  44. Tao, T., Vu, V.: Random matrices: universality of local eigenvalue statistics up to the edge. Commun. Math. Phys. 298, 549–572 (2010)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  45. Tracy, C.A., Widom, H.: On orthogonal and symplectic matrix ensembles. Commun. Math. Phys. 177, 727–754 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Astrauskas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Astrauskas, A. Extremal Theory for Spectrum of Random Discrete Schrödinger Operator. II. Distributions with Heavy Tails. J Stat Phys 146, 98–117 (2012). https://doi.org/10.1007/s10955-011-0402-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-011-0402-9

Keywords

Navigation