Skip to main content
Log in

Flat Histogram Monte Carlo Simulations of Triangulated Fixed-Connectivity Surface Models

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Using the Wang-Landau flat histogram Monte Carlo (FHMC) simulation technique, we were able to study two types of triangulated spherical surface models in which the two-dimensional extrinsic curvature energy is assumed in the Hamiltonian. The Gaussian bond potential is also included in the Hamiltonian of the first model, but it is replaced by a hard-wall potential in the second model. The results presented in this paper are in good agreement with the results previously reported by our group. The transition of surface fluctuations and collapsing transition were studied using the canonical Metropolis Monte Carlo simulation technique and were found to be of the first-order. The results obtained in this paper also show that the FHMC technique can be successfully applied to triangulated surface models. It is non-trivial whether the technique is applicable or not to surface models because the simulations are performed on relatively large surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Helfrich, W.: Z. Naturforsch C 28, 693 (1973)

    Google Scholar 

  2. Polyakov, A.M.: Nucl. Phys. B 268, 406 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  3. Kleinert, H.: Phys. Lett. B 174, 335 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  4. Nelson, D.: In: Nelson, D., Piran, T., Weinberg, S. (eds.), Statistical Mechanics of Membranes and Surfaces, second edn., p. 1. World Scientific, Singapore (2004)

    Google Scholar 

  5. David, F.: In: Nelson, D., Piran, T., Weinberg, S. (eds.), Two Dimensional Quantum Gravity and Random Surfaces, vol. 8, p. 81. World Scientific, Singapore (1989)

    Google Scholar 

  6. David, F.: In: Nelson, D., Piran, T., Weinberg, S. (eds.), Statistical Mechanics of Membranes and Surfaces, second edn., p. 149. World Scientific, Singapore (2004)

    Google Scholar 

  7. Wiese, K.: In: Domb, C., Lebowitz, J. (eds.), Phase Transitions and Critical Phenomena, vol. 19, p. 253. Academic Press, London (2000)

    Chapter  Google Scholar 

  8. Bowick, M., Travesset, A.: Phys. Rep. 344, 255 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Kantor, Y., Nelson, D.R.: Phys. Rev. A 36, 4020 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  10. Ambjorn, J., Irback, A., Jurkiewicz, J., Petersson, B.: Nucl. Phys. B 393, 571 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  11. Wheater, J.F.: J. Phys., A Math. Gen. 27, 3323 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  12. Peliti, L., Leibler, S.: Phys. Rev. Lett. 54(15), 1690 (1985)

    Article  ADS  Google Scholar 

  13. David, F., Guitter, E.: Europhys. Lett. 5(8), 709 (1988)

    Article  ADS  Google Scholar 

  14. Paczuski, M., Kardar, M., Nelson, D.R.: Phys. Rev. Lett. 60, 2638 (1988)

    Article  ADS  Google Scholar 

  15. Borelli, M.E.S., Kleinert, H., Schakel, A.M.J.: Phys. Lett. A 267, 201 (2000)

    Article  ADS  Google Scholar 

  16. Kownacki, J.-P., Mouhanna, D.: Phys. Rev. E 79, 040101(R) (2009)

    Article  ADS  Google Scholar 

  17. Nishiyama, Y.: Phys. Rev. E 70, 016101 (2004)

    Article  ADS  Google Scholar 

  18. Kownacki, J.-P., Diep, H.T.: Phys. Rev. E 66, 066105 (2002)

    Article  ADS  Google Scholar 

  19. Koibuchi, H., Kusano, N., Nidaira, A., Suzuki, K., Yamada, M.: Phys. Rev. E 69, 066139 (2004)

    Article  ADS  Google Scholar 

  20. Koibuchi, H., Kuwahata, T.: Phys. Rev. E 72, 026124 (2005)

    Article  ADS  Google Scholar 

  21. Endo, I., Koibuchi, H.: Nucl. Phys. B 732, 426 (2006) [FS]

    Article  MATH  ADS  Google Scholar 

  22. Koibuchi, H.: J. Stat. Phys. 129, 605 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. Koibuchi, H.: Phys. Rev. E 75, 011129 (2007)

    Article  ADS  Google Scholar 

  24. Koibuchi, H.: Eur. Phys. J. E 26, 301 (2008)

    Article  Google Scholar 

  25. Koibuchi, H.: Phys. Rev. E 75, 051115 (2007)

    Article  ADS  Google Scholar 

  26. Koibuchi, H.: Phys. Rev. E 76, 061105 (2007)

    Article  ADS  Google Scholar 

  27. Di Francesco, P., Ginzparg, P., Zinn-Justin, J.: Phys. Rep. 254, 1 (1995)

    Article  ADS  Google Scholar 

  28. Wang, F., Landau, D.P.: Phys. Rev. Lett. 86, 2050 (2001)

    Article  ADS  Google Scholar 

  29. Janke, W.: In: Dunweg, B., Landau, D.P., Milchev, A.I. (eds.), Computer Simulations of Surfaces and Interfaces. Proceedings of the NATO Advanced Study Institute, Albena, Bulgaria, 9–20 September 2002. NATO Science Series, II. Mathematics, Physics and Chemistry, vol. 114, pp. 137–157. Kluwer, Dordrecht (2003)

    Google Scholar 

  30. Berg, B.A., Janke, W.: Phys. Rev. Lett. 98, 040602 (2007)

    Article  ADS  Google Scholar 

  31. Schulz, B.J., Binder, K., Müller, M.: Int. J. Mod. Phys. C 13, 477 (2002)

    Article  ADS  Google Scholar 

  32. Wang, F., Landau, D.P.: Determining the density of states for classical statistical models: a random walk algorithm to produce a flat histogram. arXiv:cond-mat/0107006

  33. Taylor, M., Paul, W., Binder, K.: J. Chem. Phys. 131, 114907 (2009)

    Article  ADS  Google Scholar 

  34. Strathmann, J.L., Rampf, F., Paul, W., Binder, K.: J. Chem. Phys. 128, 064903 (2008)

    Article  ADS  Google Scholar 

  35. Schulz, B.J., Binder, K.: Phys. Rev. E 71, 046705 (2005)

    Article  ADS  Google Scholar 

  36. Koibuchi, H., Kusano, N., Nidaira, A., Suzuki, K., Suzuki, T.: Phys. Lett. A 314, 1 (2003)

    Article  ADS  Google Scholar 

  37. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uniform pseudorandom number generator. ACM Trans. Model. Comput. Simul. 8(1), 3–30 (1998)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Koibuchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koibuchi, H. Flat Histogram Monte Carlo Simulations of Triangulated Fixed-Connectivity Surface Models. J Stat Phys 140, 676–687 (2010). https://doi.org/10.1007/s10955-010-0011-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-010-0011-z

Keywords

Navigation