Skip to main content
Log in

Using the Renormalization Group to Classify Boolean Functions

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

This paper argues that the renormalization group technique used to characterize phase transitions in condensed matter systems can be used to classify Boolean functions. A renormalization group transformation is presented that maps an arbitrary Boolean function of N Boolean variables to one of N−1 variables. Applying this transformation to a generic Boolean function (one whose output for each input is chosen randomly and independently to be one or zero with equal probability) yields another generic Boolean function. Moreover, applying the transformation to some other functions known to be non-generic, such as Boolean functions that can be written as polynomials of degree ξ with ξ N and functions that depend on composite variables such as the arithmetic sum of the inputs, yields non-generic results. One can thus define different phases of Boolean functions as classes of functions with different types of behavior upon repeated application of the renormalization transformation. Possible relationships between different phases of Boolean functions and computational complexity classes studied in computer science are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aaronson, S.: Is P versus NP formally independent? Bull. Eur. Assoc. Theor. Comput. Sci. 81, 109 (2003)

    MathSciNet  MATH  Google Scholar 

  2. Aldana, M., Coppersmith, S., Kadanoff, L.: Boolean dynamics with random couplings. In: Kaplan, E., Marsden, J., Sreenivasan, K. (eds.) Perspectives and Problems in Nonlinear Science. Springer Applied Mathematical Sciences Series. Springer, Berlin (2003)

    Google Scholar 

  3. Axelrod, R.: Advancing the art of simulation in the social sciences. In: Conte, R., Hegselmann, R., Terna, P. (eds.) Simulating Social Phenomena, pp. 21–40. Springer, Berlin (1997)

    Google Scholar 

  4. Bastolla, U., Parisi, G.: Closing probabilities in the Kauffman model: an annealed computation. Physica D 98, 1–25 (1996)

    MATH  Google Scholar 

  5. Bastolla, U., Parisi, G.: The modular structure of Kauffman networks. Physica D 115, 203–218, 219–233 (1998)

    MATH  ADS  Google Scholar 

  6. Bastolla, U., Parisi, G.: Relevant elements, magnetization and dynamical properties in Kauffman networks: a numerical study. Physica D 115, 203–218 (1998)

    MATH  ADS  Google Scholar 

  7. Bennett, C.: Logical depth and physical complexity. Oxford University Press, London (1988), pp. 227–257

    Google Scholar 

  8. Bennett, C., Gill, J.: Relative to a random oracle A, PA≠NPA≠co-NPA with probability 1. SIAM J. Comput. 10, 96–113 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bhatt, R., Lee, P.: Scaling studies of highly disordered spin-1/2 antiferromagnetic systems. Phys. Rev. Lett. 48, 344–347 (1982)

    Article  ADS  Google Scholar 

  10. Bhattacharjya, A., Liang, S.: Power-law distributions in some random Boolean networks. Phys. Rev. Lett. 77, 1644–1647 (1996)

    Article  ADS  Google Scholar 

  11. Boppana, R., Sipser, M.: The complexity of finite functions. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, pp. 759–804. Elsevier, Amsterdam (1990)

    Google Scholar 

  12. Cook, S.: The complexity of theorem proving procedures. In: Third Annual ACM Symposium on the Theory of Computing, pp. 151–158. Assoc. Comput. Mach., New York (1971)

    Chapter  Google Scholar 

  13. Coppersmith, S.: Complexity of the predecessor problem in Kauffman networks. Phys. Rev. E 75, 51108 (2007)

    Article  ADS  Google Scholar 

  14. Coppersmith, S., Kadanoff, L.P., Zhang, Z.: Reversible Boolean networks I: Distribution of cycle lengths. Physica D 149, 11–29 (2001)

    MATH  ADS  MathSciNet  Google Scholar 

  15. Derrida, B.: Random-energy model: An exactly solvable model of disordered systems. Phys. Rev. B 24, 2613–2626 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  16. Derrida, B., Flyvbjerg, H.: The random map model: a disordered model with deterministic dynamics. J. Phys. 48, 971–978 (1987)

    MathSciNet  Google Scholar 

  17. Derrida, B., Weisbuch, G.: Evolution of overlaps between configuration in random networks. J. Phys. (Paris) 47, 1297–1303 (1986)

    Google Scholar 

  18. Furst, M., Saxe, J., Sipser, M.: Parity, circuits, and the polynomial-time hierarchy. Math. Syst. Theory 17, 13–27 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  19. Goldenfeld, N.: Lectures on Phase Transitions and the Renormalization Group. Perseus, New York (1992)

    Google Scholar 

  20. Goldreich, O.: Candidate one-way functions based on expander graphs (2000). Cryptology ePrint Archive, Report 200/063, available at http://www.wisdom/weizmann.ac.il/~oded/ow-candid.html

  21. Håstad, J.: Almost optimal lower bounds for small depth circuits. In: Proc. 18th ACM Symp. on Theory of Computing, pp. 6–20 (1986)

  22. Hurford, J.: Random Boolean nets and features of language. IEEE Trans. Evol. Comput. 5, 111–116 (2001)

    Article  Google Scholar 

  23. Institute, C.M.: Clay Mathematics Institute Millennium Problems. http://www.claymath.org/millenium/

  24. Kadanoff, L.: Scaling laws for Ising models near T c . Physics 2, 263–272 (1966)

    Google Scholar 

  25. Kauffman, S.: Homeostasis and differentiation in random genetic control networks. Nature 244, 177–178 (1969)

    Article  ADS  Google Scholar 

  26. Kauffman, S.: Metabolic stability and epigenesis in random constructed genetic nets. J. Theor. Biol. 22, 437–467 (1969)

    Article  MathSciNet  Google Scholar 

  27. Kauffman, S.: The large scale structure and dynamics of genetic control circuits: An ensemble approach. J. Theor. Biol. 44, 167–190 (1974)

    Article  Google Scholar 

  28. Kauffman, S.: Emergent properties in random complex automata. Physica D 10, 145–156 (1984)

    ADS  MathSciNet  Google Scholar 

  29. Kauffman, S.: The Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press, London (1993)

    Google Scholar 

  30. Kauffman, S.: At Home in the Universe: The Search for Laws of Self-Organization and Complexity. Oxford University Press, London (1995)

    Google Scholar 

  31. Levin, L.: Universal sorting problems. Probl. Pered. Inf. 9, 115–116 (1973) (in Russian). English translation: Universal search problems, in: Trakhtenbrot, B.A.: A survey of Russian approaches to Perebor (Brute-Force searches) algorithms. Ann. Hist. Comput. 6(4), 384–400 (1984)

    MATH  Google Scholar 

  32. Li, M., Vitanyi, P.: An Introduction to Kolmogorov Complexity and Its Applications, 2nd edn. Springer, New York (1997)

    MATH  Google Scholar 

  33. Ma, S.K., Dasgupta, C., Hu, C.K.: Random antiferromagnetic chain. Phys. Rev. Lett. 43, 1434–1437 (1979)

    Article  ADS  Google Scholar 

  34. Marsaglia, G., Marsaglia, J.: A new derivation of Stirling’s approximation to n!. Am. Math. Mon. 97, 826–829 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  35. Papadimitriou, C.: Computational Complexity. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  36. Qu, X., Aldana, M., Kadanoff, L.: Numerical and theoretical studies of noise effects in the Kauffman model. J. Stat. Phys. 109, 967–985 (2002)

    Article  MATH  Google Scholar 

  37. Raz, R.: Lecture notes on arithmetic circuits. http://www.cs.mcgill.ca/~denis/notes05.ps

  38. Razborov, A.: Lower bounds on the size of bounded-depth networks over a complete basis with logical addition. Math. Notes Acad. Sci. USSR 41, 333–338 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  39. Razborov, A., Rudich, S.: Natural proofs. In: Proc. 26th ACM Symp. on Theory of Computing, pp. 204–213 (1994)

  40. Riordan, J., Shannon, C.: The number of two-terminal series-parallel networks. J. Math. Phys. 21, 83–93 (1942)

    MathSciNet  Google Scholar 

  41. Shannon, C.: The synthesis of two-terminal switching circuits. Bell Syst. Tech. J. 28, 59–98 (1949)

    MathSciNet  Google Scholar 

  42. Sipser, M.: The history and status of the P versus NP question. In: Proceedings of ACM STOC’92, pp. 603–618 (1992)

  43. Smolensky, R.: Algebraic methods in the theory of lower bounds for Boolean circuit complexity. In: STOC’87: Proc. of 19th STOC, pp. 77–82 (1987)

  44. Smolensky, R.: On representations by low-degree polynomials. IEEE, pp. 130–138 (1993)

  45. Socolar, J., Kauffman, S.: Scaling in ordered and critical random Boolean networks. Phys. Rev. Lett. 90, 068702 (2003)

    Article  ADS  Google Scholar 

  46. Vollmer, H.: Introduction to Circuit Complexity: A Uniform Approach. Springer, New York (1999)

    Google Scholar 

  47. Wegener, I.: The Complexity of Boolean Functions. Wiley, New York (1987). http://citeseer.ist.psu.edu/694854.html

  48. White, S.: Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863–2866 (1992)

    Article  ADS  Google Scholar 

  49. Wigderson, A.: P, NP and mathematics—a computational complexity perspective. In: Proceedings of the ICM 06 (2006). http://www.math.ias.edu/~avi/PUBLICATIONS/MYPAPERS/W06/W06.pdf

  50. Wilson, K.: The renormalization group and critical phenomena I: Renormalization group and the Kadanoff scaling picture. Phys. Rev. B 4, 3174–3183 (1971)

    Article  ADS  MATH  Google Scholar 

  51. Wilson, K.: Problems in physics with many scales of length. Sci. Am. 241, 158–179 (1979)

    Article  Google Scholar 

  52. Yao, A.: Separating the polynomial-time hierarchy by oracles. In: Proc. 26th IEEE Symposium on Foundations of Computer Science, pp. 1–10 (1985)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Coppersmith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coppersmith, S.N. Using the Renormalization Group to Classify Boolean Functions. J Stat Phys 130, 1063–1085 (2008). https://doi.org/10.1007/s10955-008-9486-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-008-9486-2

Keywords

Navigation