Skip to main content
Log in

Probability of Local Bifurcation Type from a Fixed Point: A Random Matrix Perspective

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Results regarding probable bifurcations from fixed points are presented in the context of general dynamical systems (real, random matrices), time-delay dynamical systems (companion matrices), and a set of mappings known for their properties as universal approximators (neural networks). The eigenvalue spectrum is considered both numerically and analytically using previous work of Edelman et al. Based upon the numerical evidence, various conjectures are presented. The conclusion is that in many circumstances, most bifurcations from fixed points of large dynamical systems will be due to complex eigenvalues. Nevertheless, surprising situations are presented for which the aforementioned conclusion does not hold, e.g., real random matrices with Gaussian elements with a large positive mean and finite variance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Random matrices and their applications, volume 50 of Contemporary mathematics. AMS (1986).

  2. R. Adams and J. J. F. Fournier, Sobolev Spaces, 2nd edition (Elsevier, 2003).

  3. D. J. Albers, J. P. Crutchfield and J. C. Sprott, Phenomenological scaling in the organization of high-dimensional dynamics. In preparation.

  4. D. J. Albers and J. C. Sprott, Routes to chaos in high-dimensional dynamical systems: A qualitative numerical study. submitted, see http://www.santafe.edu/∼albers/research/publications.html (2005).

  5. D. J. Albers and J. C. Sprott, Structural stability and hyperbolicity violation in high-dimensional dynamical systems. Nonlinearity 19: 1801–1847 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. D. J. Albers, J. C. Sprott and W. D. Dechert, Routes to chaos in neural networks with random weights. Int. J. Bif. Chaos 8: 1463–1478 (1998).

    Article  MATH  Google Scholar 

  7. S. Amari. Characteristics of random nets of analog neuron-like elements. IEEE Trans. Syst. Man. Cyb., SMC-2 N 5: 643–657 (1972).

    Google Scholar 

  8. S. Amari, H. Nagaoka and S.-I. Amari, Methods of Information Geometry. Translations of Mathematical Monographs. AMS (2001).

  9. D. K. Arrowsmith and C. M. Place, An Introduction to Dynamical Systems (Cambridge University Press, 1990).

  10. Z. D. Bai, Circular law. Ann. Probab. 25: 494–529 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  11. P. Brunovsky, On one parameter families of diffeomorphisms. Commentationes mathematicae Universitatis Carolinae 11: 559–582 (1970).

    MathSciNet  MATH  Google Scholar 

  12. B. Cessac, B. Doyon, M. Quoy and M. Samuelides, Mean-field equations, bifurcation map and route to chaos in discrete time neural networks. Physica D 74: 24–44 (1994).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. B. Doyon, B. Cessac, M. Quoy and M. Samuelides, Control of the transition to chaos in neural networks with random connectivity. IJBC 3: 279–291 (1993).

    Article  MATH  Google Scholar 

  14. B. Doyon, B. Cessac, M. Quoy and M. Samuelides. On bifurcations and chaos in random neural networks. Acta Biotheo. 42: 215–225 (1994).

    Article  Google Scholar 

  15. A. Edelman, The probability that a random gaussian matrix has k real eigenvalues, related distributions, and the circular law. J. Multivariate Anal. 60: 203–232 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Edelman and E. Kostlan, How many zeros of a random polynomial are real? Bull. Amer. Math. Soc. 32: 1–37 (1995).

    MathSciNet  MATH  Google Scholar 

  17. A. Edelman, E. Kostlan and M. Shub, How many eigenvalues of a random matrix are real? J. Am. Math. Soc. 7: 247–267 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Edelman and H. Murakami, Polynomial roots from companion matrix eigenvalues. Math. Comput. 64: 763–776 (1995).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. R. Gencay and W. D. Dechert, An algorithm for the n Lyapunov exponents of an n-dimensional unknown dynamical system. Physica D 59: 142–157 (1992).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. J. Ginbre, Statistical ensembles of complex, quaternion and real matrices. J. Math. Phys. 6: 440–449 (1965).

    Article  ADS  Google Scholar 

  21. V. Girko, Circular law. Theory Probab. Appl. 29: 694–706 (1984).

    Article  MathSciNet  Google Scholar 

  22. V. Girko, Theory of Random Determinants (Kluwer Academic, 1990).

  23. V. Girko, The circular law: Ten years later. Random Oper. and Stoch. Eqns. 2: 235–276 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  24. V. Girko. Strong circular law. Random Oper. and Stoch. Eqns. 5: 173–196 (1997).

    MathSciNet  MATH  Google Scholar 

  25. V. Girko, The V-density of eigenvalues of non-symmetric random matrices and rigorous proof of the strong circular law. Random Oper. and Stoch. Eqns. 5: 371–406 (1997).

    MathSciNet  MATH  Google Scholar 

  26. V. Girko, The strong circular law. Twenty years later. Part I. Random Oper. and Stoch. Equ. 12: 49–104 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  27. V. Girko, The strong circular law. Twenty years later. Part II. Random Oper. and Stoch. Equ. 12: 255–312 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  28. V. Girko, The strong circular law. Twenty years later. Part III. Random Oper. and Stoch. Equ. 13: 53–109 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  29. R. Horn and C. Johnson, Matrix Analysis (Cambridge Univerisity Press, 1985).

  30. K. Hornik, M. Stinchocombe and H. White, Mulitlayer feedforward networks are universal approximators. Neural Networks 2: 359–366 (1989).

    Article  Google Scholar 

  31. K. Hornik, M. Stinchocombe and H. White, Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks. Neural Netw. 3: 551 (1990).

    Article  Google Scholar 

  32. B. R. Hunt, T. Sauer and J. A. Yorke, Prevalence: a translation invariant “almost everywhere” on infinite-dimensional spaces. Bull. Am. Math. Soc. 27: 217–238 (1992).

    MathSciNet  MATH  Google Scholar 

  33. B. R. Hunt, T. Sauer and J. A. Yorke, Prevalence: an addendum. Bull. Am. Math. Soc. 28: 2306–307 (1993).

    MathSciNet  Google Scholar 

  34. M. Kac, On the average number of real roots of a random algebraic equation. Bull. Am. Math. Soc. 49: 314–320 and 938 (1943).

    Article  MathSciNet  MATH  Google Scholar 

  35. H. Kantz and T. Schreiber, Nonlinear Time Series Analysis, 2nd edition (Cambridge University Press, 2003).

  36. E. Kanzieper and G. Akemann, Towards spectral theory of Ginibre's ensemble of real random matrices. Phys. Rev. Lett. 95: 230201 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  37. A. Katok, Lyapunov exponents, entropy, and periodic orbits for diffeomorphisms. Publ. Math. I.H.E.S. 51: 137–174 (1980).

    MathSciNet  MATH  Google Scholar 

  38. Y. Kuznetzov, Bifurcation Theory, 2nd edition (Springer-Verlag, 1998).

  39. M. L. Mehta, Random Matrices, chapter 15 (Elsevier, 2004).

  40. O. Moynot and M. Samuelides, Large deviations and mean-field threory for asymmetric random recurrent neural networks. Probab. Theory Relat. Fields 123: 41–75 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  41. J. Neimark, On some cases of periodic motions depending on parameters. Dokl. Acad. Nauk SSSR 129: 736–739 (1959).

    MathSciNet  MATH  Google Scholar 

  42. V. I. Oseledec, A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems. Tras. Moscow Math. Soc. 19: 197–221 (1968).

    MathSciNet  Google Scholar 

  43. W. Ott and J. Yorke, Learning about reality from observations. SIAM J. Appl. Dyn. Syst., 3: 297–322 (2003).

    Article  MathSciNet  Google Scholar 

  44. W. Ott and J. A. Yorke, Prevalence. Bull. Am. Math. Soc. 42: 263–290 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  45. Y. B. Pesin, Lyapunov characteristic exponents and smooth ergodic theory. English Transl. Russian Math. Surv. 32: 55–114 (1977).

    Article  MathSciNet  Google Scholar 

  46. D. Ruelle, Characteristic exponents and invariant manifolds in Hilbert space. Ann. Math. 115: 243–290 (1982).

    Article  MathSciNet  Google Scholar 

  47. R. Sacker, On invariant surfaces and bifurcation of periodic solutions of ordinary differential equations. Technical Report 333 (New York State University, 1964).

  48. T. Sauer, J. Yorke and M. Casdagli, Embedology. J. Stat. Phys. 65: 579–616 (1991).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  49. H. Sompolinsky, A. Crisanti and H. J. Sommers, Chaos in random neural networks. Phys. Rev. Lett. (1988).

  50. J. Sotomayor, Structural stability and bifurcation theory. Dyn. Syst. 549–560 (1973).

  51. J. C. Sprott, Chaos and Time-series Analysis (Oxford University Press, 2003).

  52. F. Takens, Detecting atrange attractors in turbulence. In D. Rand and L. Young (Eds.), Lecture Notes in Mathematics, vol. 898, pp. 366–381, Dynamical Systems and Turbulence, Warwick (Springer-Verlag, Berlin, 1981).

    Chapter  Google Scholar 

  53. S. Wiggins, Global Bifurcations and Chaos: Analytical Methods (AMS. Springer-Verlag, 1988).

  54. S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, vol. 2 of TAM. (Springer-Verlag, 1994).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. Albers.

Additional information

PACS numbers: 05.45.−a, 05.45.Tp, 89.75.−k, 89.75.Fb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albers, D.J., Sprott, J.C. Probability of Local Bifurcation Type from a Fixed Point: A Random Matrix Perspective. J Stat Phys 125, 885–921 (2006). https://doi.org/10.1007/s10955-006-9232-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9232-6

Keywords

Navigation