Skip to main content
Log in

Scaling, Renormalization and Statistical Conservation Laws in the Kraichnan Model of Turbulent Advection

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present a systematic way to compute the scaling exponents of the structure functions of the Kraichnan model of turbulent advection in a series of powers of ξ, adimensional coupling constant measuring the degree of roughness of the advecting velocity field. We also investigate the relation between standard and renormalization group improved perturbation theory. The aim is to shed light on the relation between renormalization group methods and the statistical conservation laws of the Kraichnan model, also known as zero modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abramowitz and L. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical Table (Dover Publications, 1974).

  2. L. Ts. Adzhemyan, A. V. Antonov, V. A. Barinov, Yu. S. Kabrits and A. N. Vasil’ev, Phys. Rev. E 63:025303(R) (2001), erratum E 64 019901 and nlin.CD/0010031.

  3. L. Ts. Adzhemyan, A. V. Antonov, V. A. Barinov, Yu. S. Kabrits and A. N. Vasil’ev, Phys. Rev. E 64, 056306 and nlin.CD/0106023.

  4. L. Ts. Adzhemyan, A. V. Antonov and A. N. Vasil’ev, The field theoretic renormalization group in fully developed turbulence (Gordon and Breach, Amsterdam, 1999).

  5. L. Ts. Adzhemyan, A. V. Antonov and A. N. Vasil’ev, Phys. Rev. E 58:1823 (1998) and chao-dyn/9801033.

    Article  ADS  MathSciNet  Google Scholar 

  6. K. H. Andersen and P. Muratore-Ginanneschi, Phys. Rev. E 60:6663 (1999) and chao-dyn/9902007.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. A. V. Antonov, Phys. Rev. E60:6691 (1999).

    ADS  MathSciNet  Google Scholar 

  8. I. Arad, V. S. L’vov, E. Podivilov and I. Procaccia, Phys. Rev. E 64:4904 (2000) and chao-dyn/9907017.

    Article  ADS  MathSciNet  Google Scholar 

  9. I. Arad, L. Biferale, A. Celani, I. Procaccia and M. Vergassola, Phys. Rev. Lett. 87:164502 (2001) and nlin.CD/0104027.

    Article  ADS  Google Scholar 

  10. D. Bernard, G. Gawédzki and A. Kupiainen, Phys. Rev. E 54:2564 (1996) and chao-dyn/9601018.

    Article  ADS  MathSciNet  Google Scholar 

  11. D. Bernard, G. Gawedzki and A. Kupiainen, J. Stat. Phys. 90:519 (1998) and cond-mat/9706035.

    MATH  MathSciNet  Google Scholar 

  12. V. I. Belinicher and V. S. L’vov, Sov. Phys. JETP 66:303 (1987).

    Google Scholar 

  13. T. Bohr, M. H. Jensen, G. Paladin and A. Vulpiani, Dynamical system approach to turbulence (Cambridge University Press, 1998).

  14. J. Cardy, Scaling and renormalisation in statistical physics (Cambridge University Press, 1996).

  15. J. Cardy, Field theory and non-equilibrium statistical mechanics, lecture notes, Troisieme cycle de la Suisse Romande (1999) also available from: http://www-thphys.physics.ox.ac.uk/users/JohnCardy/home.html.

  16. A. Celani and M. Vergassola, Phys. Rev. Lett. 86:424 (2001) and nlin.CD/0006009.

    Article  ADS  Google Scholar 

  17. M. Chertkov, G. Falkovich, I. Kolokolov and V Lebedev, Phys. Rev. E 52:4924 (1995) and chao-dyn/9503001.

    Article  ADS  MathSciNet  Google Scholar 

  18. M. Chertkov and G. Falkovich, Phys. Rev. Lett. 76:2706 (1996) and chao-dyn/9509007.

    Article  ADS  Google Scholar 

  19. J. Collins, Re normalization (Cambridge University Press, 1984).

  20. S. Corssin, J. Appl. Phys. 22:469 (1951).

    Article  MathSciNet  Google Scholar 

  21. C. De Dominicis and P. C. Martin, Phys. Rev. A 19:419 (1979).

    Article  ADS  Google Scholar 

  22. C. DeWitt-Morette and D. Elworthy, Phys. Rep. 77:125 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  23. G. Eyink and N. Goldenfeld, Phys. Rev. E 50:4679 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  24. G. Falkovich, K. Gawdzki and M. Vergassola, Rev. Mod. Phys. 73:913 (2001) and cond-mat/0105199.

    Article  ADS  Google Scholar 

  25. D. Forster, D. R. Nelson and M. J. Stephen, Phys. Rev. Lett. 36:867 (1976).

    Article  ADS  Google Scholar 

  26. D. Forster, D. R. Nelson and M. J. Stephen, Phys. Rev. A 16:732 (1977).

    Google Scholar 

  27. U. Frisch, Turbulence: The legacy of A.N. Kolmogorov (Cambridge University Press, Cambridge, 1995).

    MATH  Google Scholar 

  28. U. Frisch, A. Mazzino and M. Vergassola, Phys. Rev. Lett. 80:5532 (1998) and cond-mat/9802192.

    Article  ADS  Google Scholar 

  29. U. Frisch, A. Mazzino, A. Noullez and M. Vergassola, Phys. Fluids 11:2178 (1999) and cond-mat/9810074.

    Article  ADS  MathSciNet  Google Scholar 

  30. K. Gawedzki and A. Kupiainen, Phys. Rev. Lett. 75:3834 (1995) and chao-dyn/9506010.

    Article  ADS  Google Scholar 

  31. K. Gawedzki, Turbulence under a magnifying glass, 123 in Quantum Fields and Quantum Space Time, G. ’T Hooft, A. Jaffe, G. Mack and R. Stora (eds.), (Plenum Press, 1997 and chao-dyn/9610003).

  32. K. Gawedzki, Nucl. Phys. B (Proc. Suppl.) 58:123 (1997).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. A. N. Kolmogorov, Dokl. Akad. Nauk. SSSR 30:9 (1941) reprinted in Proc. R. Soc. Lond. A 434:9 (1991).

  34. A. N. Kolmogorov, Dokl. Akad. Nauk. SSSR 32:16 (1941) reprinted in Proc. R. Soc. Lond. A 434:15 (1991).

  35. R. H. Kraichnan, Phys. Fluids 11:945 (1968).

    Article  MATH  MathSciNet  Google Scholar 

  36. R. H. Kraichnan, Phys. Rev. Lett. 72:1016 (1994).

    Article  ADS  Google Scholar 

  37. V. Hakulinen, Comm. Math. Phys. 235:1 (2003) and math-ph/0210001.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  38. M. H. Jensen, G. Paladin and A. Vulpiani, Phys. Rev. A 45:7214 (1992).

    Article  ADS  Google Scholar 

  39. Y. Le Jan and O. Raimond, Ann. Probab. 30:826 (2002) and math/9909147.

    Article  MATH  MathSciNet  Google Scholar 

  40. M. Le Bellac, Quantum and statistical field theory (Clarendon Press, Oxford, 1992).

    Google Scholar 

  41. P. C. Martin, E. D. Siggia and H. A. Rose, Phys. Rev. A 8:423–437, (1973).

    Article  ADS  Google Scholar 

  42. A. S. Momin and A. M. Yaglom, Statistical fluid mechanics, Vol. 2 (MIT Press, Cambridge, MA, 1975).

  43. S. Ma, Modern theory of critical phenomena (W.A. Benjamin Inc., 1976).

  44. A. Mazzino and P. Muratore-Ginanneschi, Phys. Rev. E 63:015302(R) (2001) and nlin.CD/0010042.

    Article  ADS  Google Scholar 

  45. P. Muratore-Ginanneschi, in preparation.

  46. A. Obukhov, Izv. Akad. Naut. SSSR, Ser. Geogr. I. Geofiz. 13:55 (1949).

    Google Scholar 

  47. B. Oksendal, Stochastic differential equations, 5th ed. (Springer, Berlin, 1998).

    Google Scholar 

  48. O. M. Ogreid and P. Osland, J. Comput. Appl. Math. 140:659 (2002) and math-ph/0010026.

    Article  MATH  MathSciNet  Google Scholar 

  49. A. D. Poularikas (ed.) The transforms and applications Handbook (CRC Press, Inc., 1999) also available from http://www.mathnetbase.com/.

  50. D. Ronis, Phys. Rev. A 36:3322 (1987).

    Article  ADS  Google Scholar 

  51. A. N. Vasil’ev, The field theoretic renormalization group in critical behavior theory and stochastic dynamics (Chapman & Hall/CRC, Boca Raton, 2004).

  52. M. Vergassola, Phys. Rev. E 53:R3021 (1996).

    Article  ADS  Google Scholar 

  53. http://www.math.helsinki.fi/mathphys/paolo_files/passive_scalar/passeal.html

  54. Z. Y. Wen and J. Avery, J. Math. Phys. 26:396 (1985).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  55. K. J. Wiese, J. Stat. Phys. 101:843 (2000) and chao-dyn/9911005.

    Article  MATH  MathSciNet  Google Scholar 

  56. K. G. Wilson and J. Kogut, Phys. Rep. C 12:75 (1974).

    Article  ADS  Google Scholar 

  57. K. G. Wilson, Rev. Mod. Phys. 55:583 (1983).

    Article  ADS  Google Scholar 

  58. A. Wirth and L. Biferale, Phys. Rev. E 54:4982 (1996).

    Article  ADS  Google Scholar 

  59. J. Zinn-Justin, Quantum field theory and critical phenomena (Clarendon Press, Oxford, 1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kupiainen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kupiainen, A., Muratore-Ginanneschi, P. Scaling, Renormalization and Statistical Conservation Laws in the Kraichnan Model of Turbulent Advection. J Stat Phys 126, 669–724 (2007). https://doi.org/10.1007/s10955-006-9205-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9205-9

Keywords

Navigation