Skip to main content
Log in

Solvent Effect on the Absorption and Fluorescence Emission Spectra of Some Purine Derivatives: Spectrofluorometric Quantitative Studies

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The absorption and emission spectra of six purine derivatives: adenine (I), N(9)-hydroxyethyladenine (II), N(6)-acetyladenine (III), N(6)-isobutyryladenine (IV), guanine (V), and N(2),N(9)-diacetylguanine (VI) have been investigated. The effects of solvent and pH on the positions of λ max  (absorption) and λ max  (emission) of these compounds were determined. Correlations between the absorption wavelength (λ max ) of these organic compounds and the solvent parameters (D,n,E) or (K,M,N) show that the peak position is affected mainly by specific- and non-specific types of interactions between the solvent and solute. Solvent effects on the electronic absorption band shifts are indicative of the extent of charge reorganization of the solute molecules upon electronic excitation. The Stokes shift (ν absν em) was correlated with the orientation polarizability (Δf) and was found to depend mainly on the dielectric constant and the refractive index of the solvents. This shift reflects the influence of the equilibrium solvent arrangement around the excited solute molecule, which rearranges inertially due to the instantaneous charge redistribution upon radiative deactivation to the electronic ground state. A spectrofluorometric analysis technique was applied for the quantitative analysis of the components of a ternary mixture of compounds (I–III).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cadet, J., Vigny, P.: The photochemistry of nucleic acids. In: Morrison, H. (ed.) Photochemistry and the Nucleic Acids. Wiley, New York (1990)

    Google Scholar 

  2. Williams, M., Kowaluk, E.A., Arneric, S.P.: Emerging molecular approaches to pain therapy. J. Med. Chem. 42, 1481–500 (1999)

    Article  CAS  Google Scholar 

  3. Lipinski, C.A.: Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods 44, 235–249 (2000)

    Article  CAS  Google Scholar 

  4. Edamura, K., Sasai, H.: No self-injurious behavior was found in HPRT-deficient mice treated with 9-ethyladenine. Pharmacol. Biochem. Behav. 61, 175–179 (1998)

    Article  CAS  Google Scholar 

  5. Hecht, S.M., McDonald, J.J.: Mass spectra of some 6-substituted ureidopurines and N6-acyladenines. Anal. Biochem. 47, 157–173 (1972)

    Article  CAS  Google Scholar 

  6. Lang, P., Magnin, G., Mathis, G., Burger, A., Biellmann, J.F.: Synthesis of 8-(ω-hydroxyalkyl)-, 8-(ω-hydroxyalk-1-enyl)-, and 8-(ω-hydroxyalk-1-ynyl)adenines using the tert-butyldimethylsilyloxymethyl group, a new and versatile protecting group of adenine. J. Org. Chem. 65, 7825–7832 (2000)

    Article  CAS  Google Scholar 

  7. Schaeffer, H.J., Bhargava, P.S.: Enzyme inhibitors, V: the syntheses of 6-substituted-(9-hydroxyalkyl)purines and their evaluation as inhibitors of adenosine deaminase. Biochemistry 4, 71–76 (1965)

    Article  CAS  Google Scholar 

  8. Kitade, Y., Nakata, Y., Hirota, K., Maki, Y., Pabuccuoglu, A., Torrence, P.F.: 8-Methyladenosine-substituted analogues of 2-5A: synthesis and their biological activities. Nucl. Acids Res. 19, 4103–4108 (1991)

    Article  CAS  Google Scholar 

  9. Martin, J.H., Fox, J.E., McChesney, J.D.: Synthesis and cytokinin activity of some N6-acylaminopurines. Phytochemistry 12, 749–752 (1973)

    Article  CAS  Google Scholar 

  10. Saparbaev, M., Kleibl, K., Laval, J.: Escherichia coli, Saccharomyces cerevisiae, rat and human 3-methyladenine DNA glycosylases repair 1,N6-ethenoadenine when present in DNA. Nucl. Acids Res. 23, 3750–3755 (1995)

    Article  CAS  Google Scholar 

  11. Nagase, H., Haga, A., Kito, H., Sasaki, K., Sato, T.: Enhancing effect of metallothionein on tumor cells invasion in vitro. Cancer Res. Ther. Control 4, 301–307 (1995)

    Google Scholar 

  12. Luhrs, D.C., Viallon, J., Fischer, I.: Excited state spectroscopy and dynamics of isolated adenine and 9-methyladenine. Phys. Chem. Chem. Phys. 3, 1827–1831 (2001)

    Article  CAS  Google Scholar 

  13. Mason, S.F.: Purine studies, part II: the ultra-violet absorption spectra of some mono- and poly-substituted purines. J. Chem. Soc. 2071–2081 (1954)

  14. Mason, S.F.: The Electronic Spectra of N-Heteroarornatic Systems, Part VI: The ππ Transitions of Monocyclic Amino- and Mercaptoazines, pp 219–224 (1960)

  15. Stewart, R.F., Davidson, N.: Polarized absorption spectra of purines and pyrimidines. J. Chem. Phys. 39, 255–266 (1963)

    Article  CAS  Google Scholar 

  16. Mason, S.: The Pyrimidines. Interscience, New York (1962), Chap. 13

    Google Scholar 

  17. Andréasson, J., Holmén, A., Albinsson, B.: The photophysical properties of the adenine chromophore. Phys. Chem. B 103, 9782–9789 (1999)

    Article  CAS  Google Scholar 

  18. Sinsheimer, R.L., Scott, J.F., Loofbourow, J.R.: Ultraviolet absorption spectra at reduced temperatures, II: pyrimidines and purines. J. Biol. Chem. 187, 313–324 (1950)

    CAS  Google Scholar 

  19. Santhosh, C., Mishra, P.C.: Electronic spectra of adenine: interaction with dissolved oxygen in solution, oscillation and intensification of nπ * transition. J. Mol. Struct. 220, 25–41 (1990)

    Article  CAS  Google Scholar 

  20. Scheibe, G., Felger, E., Robler, G.: Beeinflussung von Absorptionsspektrum, Reaktionsgeschwindigkeit und Gleichgewicht durch Lösungsmittel. Ber. Dtsch. Chem. Ges. 60, 1406–1419 (1927)

    Article  Google Scholar 

  21. Sheppard, S.E.: The effects of environment and aggregation on the absorption spectra of dyes. Rev. Mod. Phys. 14, 303–340 (1942)

    Article  CAS  Google Scholar 

  22. Reichardt, C.: Solvents and Solvent Effects in Organic Chemistry, 2nd edn. VCH, Weinheim (1990)

    Google Scholar 

  23. Kamlet, M.J., Abboud, J.L., Taft, R.W.: An examination of linear solvation energy relationships. Prog. Phys. Org. Chem. 13, 485–630 (1981)

    Article  CAS  Google Scholar 

  24. Griffiths, T.R., Pugh, D.C.: Correlations among solvent polarity scales, dielectric constant and dipole moment, and a means to reliable predictions of polarity scale values from cu. Coord. Chem. Rev. 29, 129–211 (1979)

    Article  CAS  Google Scholar 

  25. Hammud, H.H., Ghannoum, A.M., Masoud, M.S.: Spectral regression and correlation coefficients of some benzaldimines and salicylaldimines in different solvents. Spectrochim. Acta Part A 63, 255–265 (2006)

    Article  CAS  Google Scholar 

  26. George, T.F.: Laser-stimulated molecular dynamics and rate processes. J. Phys. Chem. 86, 10–21 (1982)

    Article  CAS  Google Scholar 

  27. Albinsson, B.: Dual fluorescence from N6,N6-dimethyladenosine. J. Am. Chem. Soc. 119, 6369–6375 (1997)

    Article  CAS  Google Scholar 

  28. Wierzchowski, J., Sepioł, J., Sulikowski, D., Kierdaszuk, B., Shugar, D.: Fluorescence emission properties of 8-azaxanthine and its N-alkyl derivatives: excited-state proton transfer, and potential applications in enzymology. J. Photochem. Photobiol. A: Chem. 179, 276–282 (2006)

    Article  CAS  Google Scholar 

  29. Masoud, M.S., Haggag, S.S., El-Nahas, H.M., Abd El-Hi, N.: Electronic transitions and computerized electronic spectral coefficients related to the solvent effects of some azo compounds of barbituric acid. Acta Chim. Hung. 130, 783–804 (1993)

    CAS  Google Scholar 

  30. Masoud, M., Khalil, E., Hindawy, A., Ramadan, A.: Structural chemistry of some pyrimidines. Can. J. Anal. Sci. Spectrosc. 50, 207–220 (2005)

    CAS  Google Scholar 

  31. Masoud, M.S., Mostafa, M.A., Ahmed, R.H., Abd El Moneim, N.H.: Chemical equilibria and ionization of some compounds containing amide linkage. Molecules 8, 430–438 (2003)

    Article  CAS  Google Scholar 

  32. Hammud, H.H., Ghannoum, A.M., Fares, F.A., Abramian, L.K., Bouhadir, K.H.: New 1,6-heptadienes with pyrimidine bases attached—syntheses and spectroscopic analyses. J. Mol. Struct. (2007, in press)

  33. Call, P.R.: Electronic states and luminescence of nucleic acid systems. Ann. Rev. Phys. Chem. 34, 329–357 (1983)

    Article  Google Scholar 

  34. Kahmann, R., Seiler, A., Wulczyn, F.G., Pfaff, E.: The mom gene of bacteriophage Mu: a unique regulatory scheme to control a lethal function. Gene 39, 61–70 (1985)

    Article  CAS  Google Scholar 

  35. Wang, Y., Liu, Z., Dixon, C.: Major adenine products from 2-methyl-1,4-naphthoquinone-sensitized photoirradiation at 365 nm. Biochem. Biophys. Res. Commun. 291, 252–1257 (2002)

    Google Scholar 

  36. Hsieh, L.L., Hsu, S.W., Chen, D.S., Santella, R.M.: Immunological detection of aflatoxin B1-DNA adducts formed in vivo. Cancer Res. 48, 6328–6331 (1988)

    CAS  Google Scholar 

  37. Weston, A., Bowman, E., Manchester, D., Harris, C.: Fluorescence detection of lesions in DNA, In: Sutherland, B.M., Woodhead, A.D. (eds.) DNA Damage and Repair in Human Tissues, pp. 63–81. Plenum, New York (1990)

    Google Scholar 

  38. Shuker, D., Prevost, V., Friesen, M., Lin, D., Ohshima, H., Bartsch, H.: Urinary markers for measuring exposure to endogenous and exogenous alkylating agents and precursors. Environ. Health Perspect. 99, 33–37 (1993)

    Article  CAS  Google Scholar 

  39. Reed, E., Sauerhoff, S., Poirier, M.C.: Quantitation of platinum-DNA binding after therapeutic levels of drug exposure–a novel use of graphite furnace spectrometry. At. Spectrosc. 9, 93–95 (1988)

    CAS  Google Scholar 

  40. Wold, S., Sjostrom, M., Eriksson, L.: PLS-regression: a basic tool of chemometrics. Chemom. Intell. Lab. Syst. 58, 109–130 (2001)

    Article  CAS  Google Scholar 

  41. Dinç, E., Yücesoy, C., Onur, F.: Simultaneous spectrophotometric determination of mefenamic acid and paracetamol in a pharmaceutical preparation using ratio spectra derivative spectrophotometry and chemometric methods. J. Pharm. Biomed. Anal. 28, 1091–1100 (2002)

    Article  Google Scholar 

  42. Blanco, M., Gene, J., Iturriaga, H., Maspoch, S., Riba, J.: Diode-array detectors in flow-injection analysis mixture resolution by multi-wavelength analysis. Talanta 34, 987–993 (1987)

    Article  CAS  Google Scholar 

  43. Andrés, J.V., Reig, F.B., Falcó, P.C.: H-point standard additions method for analyte determination in ternary mixtures. Analyst 120, 299–304 (1995)

    Article  Google Scholar 

  44. Dinç, E., Baydan, E., Kanbur, M., Onur, F.: Spectrophotometric multicomponent determination of sunset yellow, tartrazine and allura red in soft drink powder by double divisor-ratio spectra derivative, inverse least-squares and principal component regression methods. Talanta 58, 579–594 (2002)

    Article  Google Scholar 

  45. Afkhami, A., Bahram, M.: Mean centering of ratio spectra as a new spectrophotometric method for the analysis of binary and ternary mixtures. Talanta 66, 712–720 (2005)

    Article  CAS  Google Scholar 

  46. Salinas, F., Nevado, J.J., Mansilla, A.: A new spectrophotometric method for quantitative multicomponent analysis resolution of mixtures of salicylic and salicyluric acids. Talanta 37, 347–351 (1990)

    Article  CAS  Google Scholar 

  47. El-Yazbi, F.A., Abdine, H.H., Shaalan, R.A., Korany, E.A.: Spectrophotometric determination of ternary mixtures by the derivative ratio spectrum-zero crossing method. Spectrosc. Lett. 31, 1403–1414 (1998)

    Article  CAS  Google Scholar 

  48. El-Yazbi, F.A., Kovar, K.A.: Computerized spectrophotometric method for the determination of atenolol and nifedipine in the presence of degradation products of nifedipine. Sci. Pharm. 66, 325–333 (1998)

    CAS  Google Scholar 

  49. Mehrotra, B.D., Jain, P., Anand, N.: Acetylation of adenine and 1-deazaadenine to 9(or 3)-acetyladenine. Indian J. Chem. 4, 146–148 (1966)

    CAS  Google Scholar 

  50. Goetz-Luthy, N., Lamb, B.: Polarography of some purine derivatives. J. Pharm. Pharmacol. 8, 410–416 (1956)

    CAS  Google Scholar 

  51. Lubczak, R., Duliban, J.: A study of the reaction of adenine with ethylene oxide or with ethylene carbonate. React. Funct. Polym. 52, 127–134 (2002)

    Article  CAS  Google Scholar 

  52. Masoud, M.S., Hammud, H.H.: Electronic spectral parameters of the azo indicators—methyl red, methyl orange, PAN, and fast black K-salt. Spectrochim. Acta (A) 57, 977–984 (2001)

    Article  Google Scholar 

  53. Lippert, E.: Dipole moment and electronic structure of excited molecules. Z. Naturforsch. 10, 541–546 (1955)

    Google Scholar 

  54. Lippert, E.: Spektroskopische Bestimmungen des Dipolmomentes aromatischer Verbindungen im ersten angeregten Singulettzustand. Electrochemistry 61, 962–975 (1957)

    CAS  Google Scholar 

  55. Mataga, N., Kaifu, Y., Koizumi, M.: The solvent effect on fluorescence spectrum, change of solute-solvent interaction during the lifetime of excited solute molecule. Bull. Chem. Soc. Jpn. 28, 690–691 (1955)

    Article  CAS  Google Scholar 

  56. Mataga, N., Kaifu, Y., Koizumi, M.: Solvent effects upon fluorescence spectra and the dipole moments of excited molecules. Bull. Chem. Soc. Jpn. 29, 465–470 (1956)

    Article  CAS  Google Scholar 

  57. Parker, C.: Photoluminescence of Solutions. Elsevier, Amsterdam (1968)

    Google Scholar 

  58. Swaminathan, M., Dogra, S.K.: Solvent and pH dependence of absorption and fluorescence spectra of 5-aminoindazole: biprotonic phototautomerism of singly protonated species. J. Am. Chem. Soc. 105, 6223–6228 (1983)

    Article  CAS  Google Scholar 

  59. O’Connor, D.B., Scott, G.W., Coulter, D.R., Yavrouian, A.: Temperature dependence of electronic energy transfer and quenching in copolymer films of styrene and 2-(2′-hydroxy-5′-vinylphenyl)-2H-benzotriazole. J. Phys. Chem. 95, 10252–10261 (1991)

    Article  CAS  Google Scholar 

  60. Lin, G.C., Awad, E.S., El-Sayed, M.A.: Temperature and pH dependence of the deprotonation step L550 .fwdarw. M412 in the bacteriorhodopsin photocycle. J. Phys. Chem. 95, 10442–10447 (1991)

    Article  CAS  Google Scholar 

  61. Clark, L.B., Tinoco, I., Jr.: Correlations in the ultraviolet spectra of the purine and pyrimidine bases. J. Am. Chem. Soc. 87, 11–15 (1965)

    Article  CAS  Google Scholar 

  62. Ledger, M.B., Suppan, P.: Anomalous spectroscopic shifts and the structure of 1,4-dioxane. Spectrochim. Acta Part A: Mol. Spectrosc. 23, 3007–3011 (1967)

    Article  CAS  Google Scholar 

  63. Boerresen, H.: Fluorescence and tautomerism of protonated and methylated adenine derivatives. Acta Chem. Scand. 21, 2463 (1967)

    CAS  Google Scholar 

  64. El-Yazbi, F.A., Hammud, H.H., Assi, S.A.: New spectrofluorometric application for the determination of ternary mixtures of drugs. Anal. Chim. Acta 580, 39–46 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan H. Hammud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammud, H.H., Bouhadir, K.H., Masoud, M.S. et al. Solvent Effect on the Absorption and Fluorescence Emission Spectra of Some Purine Derivatives: Spectrofluorometric Quantitative Studies. J Solution Chem 37, 895–917 (2008). https://doi.org/10.1007/s10953-008-9289-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-008-9289-8

Keywords

Navigation