Skip to main content
Log in

Stability of Copper(II), Nickel(II) and Zinc(II) Binary and Ternary Complexes of Histidine, Histamine and Glycine in Aqueous Solution

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The binary and mixed-ligand complexes formed between ligands (histidine (His), histamine (Him) and glycine (Gly)) and some transition metals (Cu(II), Ni(II) and Zn(II)) were studied potentiometrically in aqueous solution at (25.0 ± 0.1) C and I = 0.10 M KCl in order to determine the protonation constants of the free ligands and stability constants of binary and ternary complexes. The complexation model for each system has been established by the software program “BEST” from the potentiometric data. The most probable binding mode for each binary species of histidine and for all mixed species was also discussed based upon derived equilibrium constants and stability constants related to the binary species. The ambidentate nature of the histidine ligand, i.e. the ability to coordinate histamine-like, imidazolepropionic acid-like and glycine-like modes was indicated from the results obtained. The stability of ternary complexes was quantitatively compared with their corresponding binary complexes in terms of the parameters, Δlog K, log X and Δ1110. The concentration distributions of various species formed in solution were also evaluated. In terms of the nature of metal ion, the complex stability follows the trend Cu(II) > Ni(II) > Zn(II), which is in agreement with the Irving-Williams’ order of metal ions. Thus, the results obtained were compared and evaluated with those in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Sigel and A. Sigel, Metal Ions in Biological Systems, Vols. 12 & 13 (Marcel Dekker, New York, 1981).

    Google Scholar 

  2. B. J. Hathaway, in Comprehensive Coordination Chemistry, G. Wilkins, R. D. Gillard and J. A. McCleverty, eds., vol. 5, Chapter 53 (Pergamon, Oxford, 1987).

  3. K. D. Karlin and Z. Tyeklar (eds.), Bioinorganic Chemistry of Copper (Chapman and Hall, New York, 1993).

    Google Scholar 

  4. D. M. Dooley, in Encyclopedia of Inorganic Chemistry, R. B. King, ed., vol. 2, pp. 905–924 (Wiley, New York, 1974).

    Google Scholar 

  5. R. K. Conry and K. D. Karlin, in Encyclopedia of Inorganic Chemistry, R. B. King, ed., vol. 6, pp. 829–846 (Wiley, New York, 1994).

    Google Scholar 

  6. T. J. Spiro (ed.), Metal Ions In Biology Series: Copper Proteins, vol. 3, (Wiley Interscience, New York, 1981).

    Google Scholar 

  7. D. R. Williams, The Metals of Life, Chapter 2–3, pp. 23–54 (The Camelot Press Ltd, London and Southampton, 1971).

    Google Scholar 

  8. H. Sigel, Metal Ions in Biological Systems, vol. 2, Mixed-Ligand Complexes (Marcel Dekker Inc, New York, 1973).

    Google Scholar 

  9. J. J. R. Frausto da Silva and R. J. P. Williams, The Biological Chemistry of the Elements; The Inorganic Chemistry of the Life (Clarendon Press, Oxford, 1991).

    Google Scholar 

  10. R. DeWitt and J. I. Watters, J. Am. Chem. Soc. 76, 3810 (1954).

    CAS  Google Scholar 

  11. G. Gran, Acta Chem. Scand. 4, 559 (1950).

    CAS  Google Scholar 

  12. F. J. C. Rossotti and H. Rossotti, J. Chem. Edu. 42, 375 (1965).

    CAS  Google Scholar 

  13. G. Schwarzenbach, Komplexometrishe Titration, Titration Procedures and Working Instructions; Second Edition, pp. 145–265 (London, Methuen, 1969).

    Google Scholar 

  14. Y. Altun, J. Solution Chem. 33, 479 (2004).

    Article  CAS  Google Scholar 

  15. A. E. Martell and R. J. Motekaitis, The Determination and Use of Stability Constants (VCH, Weinheim, 1988).

  16. B. L. Mickel and A. C. Andrews, J. Am. Chem. Soc. 77, 1955 (1955).

    Article  Google Scholar 

  17. A. E. Martell and R. M. Smith, Amino Acids, Critical Stability Constants (New York, 1974).

  18. L. D. Pettit and J. L. M. Swash, J. Chem. Soc., Dalton. Trans. 588 (1976).

  19. M. M. Shoukry, E. M. Khairy, and R. G. Khalil, Trans. Met. Chem. 22, 465 (1997).

    Article  CAS  Google Scholar 

  20. S. Sjöberg, Pure Appl. Chem. 69, 1549 (1997).

    Google Scholar 

  21. M. C. M. Fernandes, E. B. M. Paniago, and S. Carvalho, J. Braz. Chem. Soc. 8, 537 (1997).

    CAS  Google Scholar 

  22. I. Sovago and A. Gergely, Inorg. Chim Acta 20, 27 (1976).

    CAS  Google Scholar 

  23. M. Remelli, C. Munerato, E. Pulidori, J. Chem. Soc., Dalton Trans. 964 (1978).

  24. L. Pettit, Pure Appl. Chem. 56, 247 (1984).

    Google Scholar 

  25. A. Abbaspour, M. A. Kamyabi, Anal. Chim. Acta 512, 257 (2004).

    Article  CAS  Google Scholar 

  26. T. Szabó-Plánka, A. Rockenbauer, L. Korecz, and D. Nagy, Polyhedron 19, 1123 (2000).

    Article  Google Scholar 

  27. M. A. Khan, G. Bouet, F. Vierling, J. Meullemeestre, and M. J. Schwing, Trans. Met. Chem. 21, 231 (1996).

    Article  CAS  Google Scholar 

  28. H. M. Irving and R. J. P. Williams, J. Chem. Soc. 3192 (1953).

  29. L. Cassella, and M. Gullotti, J. Inorg. Biochem. 18, 19 (1983).

    Article  PubMed  Google Scholar 

  30. R. J. Sundberg and R. B. Martin, Chem. Rev. 74, 471 (1974).

    Article  CAS  Google Scholar 

  31. A. Chakravorty and F. A. Cotton, J. Am. Chem. Soc. 67, 2878 (1963).

    Google Scholar 

  32. M. A. Doran, S. Chaberek, and A. E. Martell, J. Am. Chem. Soc. 2129 (1964).

  33. R. H. Carlson and L. T. Brown, Inorg. Chem. 5, 268 (1966).

    Article  CAS  Google Scholar 

  34. H. C. Freeman and R. P. Martin, J. Biol. Chem. 244, 4823 (1969).

    CAS  PubMed  Google Scholar 

  35. J. L. Meyer and J. E. Jr. Bauman, J. Am. Chem. Soc. 92, 4210 (1970).

    CAS  PubMed  Google Scholar 

  36. D. R. Williams, J. Chem. Soc. (A) 1550 (1970).

  37. D. R. Williams, J. Chem. Soc., Dalton Trans. 790 (1972).

  38. R. Nagane, M. Chikira, M. Oumi, H. Shindo, and W. E. Antholine, J. Inorg. Biochem. 78, 243 (2000).

    CAS  PubMed  Google Scholar 

  39. E. Wilson, M. Kasperian, and B. Martin, J. Am. Chem. Soc. 92, 5365 (1970).

    CAS  PubMed  Google Scholar 

  40. H. Sigel and D. B. McCormick, J. Am. Chem. Soc. 93, 2041 (1970).

    Google Scholar 

  41. A. H. Amrallah, N. A. Abdalla, and E. Y. El-Haty, Talanta 46, 491 (1998).

    CAS  Google Scholar 

  42. G. Valensin, R. Basosi, W. E. Antholine, and E. Gaggelli, J. Inorg. Biochem. 23, 125 (1983).

    Google Scholar 

  43. R. Leberman and R. B. Rabin, Trans. Faraday Soc. 55, 1660 (1959).

    CAS  Google Scholar 

  44. D. D. Perrin and V. S. Scharma, J. Chem. Soc. (A) 446 (1968).

  45. P. J. Morris and R. B. Martin, J. Inorg. Nuel. Chem. 32, 2891 (1970).

    CAS  Google Scholar 

  46. T. P. A. Kruck and B. Sarkar, Can. J Chem. 51, 3549 (1973).

    Google Scholar 

  47. G. Arena, R. Call, V. Cucinotta, S. Musumeci, and M. Rizzarelli, J. Chem. Soc., Dalton Trans. 1651 (1984).

  48. G. Brookes and L. D. Pettit, J. Chem. Soc., Dalton Trans. 1224 (1976).

  49. B. A. Goodman, D. B. McPhail, and H. K. J. Powell, J. Chem. Soc., Dalton Trans. 822 (1981).

  50. B. Evertsson and M. J. Gullotti, Inorg. Biochem. 18, 19 (1983).

    Article  PubMed  Google Scholar 

  51. L. Ruliek and J. Vondrazek, J. Inorg. Bio. 71, 115 (1998).

    Google Scholar 

  52. M. S. Nair, M. Santapa, and P. Natarjan, J. Chem. Soc., Dalton Trans. 1312 (1980).

  53. M. T. El-Haty, A. H. Amrallah, R. A. Mahmoud, and A. A. Ibrahim, Talanta 42, 1711 (1995).

    CAS  Google Scholar 

  54. B. Kurzak, K. Bogusz, D. Kroczewska, and J. Jezierska, Polyderon 20, 2627 (2001).

    CAS  Google Scholar 

  55. A. Kayali and G. Berthon, J. Chem. Soc., Dalton Trans. 2374 (1980).

  56. V. Manjula, D. Chakraborty, and P. K. Bhattacharya, Indian J. Chem. 29A, 577 (1990).

    CAS  Google Scholar 

  57. V. S. Sharma and J. Schubert, J. Chem. Edu. 46, 506 (1969).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yüksel Altun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altun, Y., Köseoĝlu, F. Stability of Copper(II), Nickel(II) and Zinc(II) Binary and Ternary Complexes of Histidine, Histamine and Glycine in Aqueous Solution. J Solution Chem 34, 213–231 (2005). https://doi.org/10.1007/s10953-005-2763-7

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-005-2763-7

Keywords

Navigation