Skip to main content
Log in

Theoretical aspects of multicriteria flight gate scheduling: deterministic and fuzzy models

  • Published:
Journal of Scheduling Aims and scope Submit manuscript

Abstract

This paper addresses the airport flight gate scheduling problem with multiple objectives. The objectives are to maximize the total flight gate preferences, to minimize the number of towing activities, and to minimize the absolute deviation of the new gate assignment from a so-called reference schedule. The problem examined is a multicriteria multi-mode resource-constrained project scheduling problem with generalized precedence constraints or time windows. While in previous approaches the problem has been simplified to a single objective counterpart, we tackle it directly by a multicriteria metaheuristic, namely Pareto Simulated Annealing, in order to get a representative approximation of the Pareto front. Possible uncertainty of input data is treated by means of fuzzy numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarts, E. H. L., & Korst, J. H. M. (1989). Simulated annealing and Boltzmann machines. New York: Wiley.

    Google Scholar 

  • Bartusch, M., Möhring, R. H., & Radermacher, F. J. (1988). Scheduling project networks with resource constraints and time windows. Annals of Operations Research, 16, 201–240.

    Article  Google Scholar 

  • Błażewicz, J., Lenstra, J. K., & Rinnoy Kan, A. H. G. (1983). Scheduling projects subject to resource constraints: classification and complexity. Discrete Applied Mathematics, 5, 11–24.

    Article  Google Scholar 

  • Boctor, F. (1996). Resource-constrained project scheduling by simulated annealing. International Journal of Production Research, 34, 2335–2351.

    Article  Google Scholar 

  • Bouleimen, K., & Lecocq, H. (2003). A new efficient simulated annealing algorithm for the resource-constrained project scheduling problem and its multiple mode version. European Journal of Operations Research, 149, 268–281.

    Article  Google Scholar 

  • Brucker, P., Knust, S., Schoo, A., & Thiele, O. (1998). A branch-and-bound algorithm for resource-constrained project scheduling. European Journal of Operational Research, 112, 262–273.

    Google Scholar 

  • Brucker, P., Drexl, A., Möhring, R., Neumann, K., & Pesch, E. (1999). Resource-constrained project scheduling: notation, classification, models and methods. European Journal of Operational Research, 112, 3–41.

    Article  Google Scholar 

  • Cho, J.-H., & Kim, Y.-D. (1997). A simulated annealing algorithm for resource constrained project scheduling problems. Journal of the Operational Research Society, 48, 736–744.

    Google Scholar 

  • Christofides, N., Alwarez-Valdes, R., & Tamarit, J.-M. (1987). Project scheduling with resource constraints: a branch and bound approach. European Journal of Operations Research, 29, 262–273.

    Article  Google Scholar 

  • Czyzak, P., & Jaszkiewicz, A. (1997). Pareto simulated annealing. In G. Fandel & T. Gal (Eds.), Multiple criteria decision making. Proceedings of the XIIth international conference, Hagen (Germany) (pp. 297–307). Berlin–Heidelberg: Springer.

    Google Scholar 

  • Czyzak, P., & Jaszkiewicz, A. (1998). Pareto simulated annealing—a metaheuristic technique for multiple-objective combinatorial optimization. Journal of Multi-Criteria Decision Analysis, 7, 34–47.

    Article  Google Scholar 

  • Demeulemeester, E., & Herroelen, W. (1992). A branch-and-bound procedure for the multiple resource-constrained project scheduling problem. Management Science, 38, 1803–1818.

    Article  Google Scholar 

  • Ding, H., Lim, A., Rodrigues, B., & Zhu, Y. (2004a). New heuristics for the over-constrained airport gate assignment problem. Journal of the Operational Research Society, 55, 760–768.

    Article  Google Scholar 

  • Ding, H., Lim, A., Rodrigues, B., & Zhu, Y. (2004b). Aircraft and gate scheduling optimization at airports. In Proceedings of the 37th annual Hawaii international conference on system sciences, IEEE (pp. 74–81).

  • Ding, H., Lim, A., Rodrigues, B., & Zhu, Y. (2004c). The over-constrained airport gate assignment problem. Computers & Operations Research, 32, 1867–1868.

    Google Scholar 

  • Dorndorf, U. (2002). Project scheduling with time windows: from theory to applications. Heidelberg: Physica-Verlag.

    Google Scholar 

  • Dorndorf, U., Pesch, E., & Phan Huy, T. (2000a). A time-oriented branch-and-bound algorithm for the resource-constrained project scheduling problem with generalised precedence constraints. Management Science, 46, 1365–1384.

    Article  Google Scholar 

  • Dorndorf, U., Pesch, E., & Phan Huy, T. (2000b). A branch-and-bound algorithm for the resource-constrained project scheduling problem. Mathematical Methods of Operations Research, 52, 413–439.

    Article  Google Scholar 

  • Dorndorf, U., Drexl, A., Nikulin, Y., & Pesch, E. (2006). Flight gate scheduling: state-of-the-art and recent developments. Omega, 35, 326–334.

    Article  Google Scholar 

  • Dorndorf, U., Jaehn, F., Lin, C., Ma, H., & Pesch, E. (2007). Disruption management in flight gate scheduling. Statistica Neerlandica, 61, 92–114.

    Article  Google Scholar 

  • Dorndorf, U., Jaehn, F., & Pesch, E. (2008). Modelling robust flight gate scheduling as a clique partitioning problem. Transportation Science, 42, 292–301.

    Article  Google Scholar 

  • Drexl, A., & Nikulin, Y. (2008). Multicriteria airport gate assignment and Pareto simulated annealing. IIE Transactions, 40, 385–397.

    Article  Google Scholar 

  • Ehrgott, M. (2005). Multicriteria optimization. Berlin: Springer.

    Google Scholar 

  • Garey, M., & Johnson, D. (1979). Computers and intractability: a guide to the theory of NP-completeness. New York: Freeman.

    Google Scholar 

  • Geoffrion, A. (1968). Proper efficiency and the theory of vector maximization. Journal of Mathematical Analysis and Applications, 22, 618–630.

    Article  Google Scholar 

  • Hapke, M., Jaszkiewicz, A., & Słowiński, R. (1998a). Interactive analysis of multiple-criteria project scheduling problems. European Journal of Operational Research, 107, 315–324.

    Article  Google Scholar 

  • Hapke, M., Jaszkiewicz, A., & Słowiński, R. (1998b). Fuzzy multi-mode resource-constrained project scheduling with multiple objectives. In J. Węglarz (Ed.), Recent advances in project scheduling (pp. 355–382). Norwell: Kluwer Academic.

    Google Scholar 

  • Hartmann, S. (2001). Project scheduling with multiple modes: A genetic algorithm. Annals of Operations Research, 102, 111–135.

    Article  Google Scholar 

  • Hartmann, S., & Drexl, A. (1998). Project scheduling with multiple modes: a comparison of exact algorithms. Networks, 32, 283–297.

    Article  Google Scholar 

  • Hartmann, S., & Kolisch, R. (2000). Experimental evaluation of state-of-the-art heuristics for the resource-constrained project scheduling problem. European Journal of Operational Research, 127, 394–407.

    Article  Google Scholar 

  • Jaszkiewicz, A. (2001). Multiple objective metaheuristic algorithms for combinatorial optimization. Habilitation thesis, Poznan University of Technology.

  • Józefowska, J., Mika, M., Rózycki, R., Waligóra, G., & Węglarz, J. (2001). Simulated annealing for multi-mode resource-constrained project scheduling. Annals of Operations Research, 102, 137–155.

    Article  Google Scholar 

  • Kirkpatrick, S. (1984). Optimization by simulated annealing—quantitative studies. Journal of Statistical Physics, 34, 975–986.

    Article  Google Scholar 

  • Kirkpatrick, S., Gelatt, C., & Vecchi, M. (1983). Optimization by simulated annealing. Science, 220, 671–680.

    Article  Google Scholar 

  • Kolisch, R., & Drexl, A. (1997). Local search for nonpreemptive multi-mode resource-constrained project scheduling. IIE Transactions, 29, 987–999.

    Google Scholar 

  • Landelma, R., Miettinen, K., & Salminen, P. (2005). Reference point approach for multiple decision makers. European Journal of Operational Research, 162, 785–791.

    Article  Google Scholar 

  • Lee, J. K., & Kim, Y. D. (1996). Search heuristics for resource-constrained project scheduling. Journal of the Operational Research Society, 47, 678–689.

    Google Scholar 

  • Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., & Teller, E. (1953). Equation of state calculations by fast computing machines. Journal of Chemical Physics, 21, 1087–1092.

    Article  Google Scholar 

  • Mika, M., Waligóra, G., & Węglarz, J. (2005). Simulated annealing and tabu search for multi-mode resource-constrained project scheduling with positive discounted cash flows and different payment models. European Journal of Operational Research, 162, 639–668.

    Article  Google Scholar 

  • Neumann, K., Schwindt, C., & Zimmermann, J. (2003). Project scheduling with time windows and scarce resources (2nd ed). Berlin: Springer.

    Google Scholar 

  • Panwalkar, S., Dudek, R., & Smith, M. (1973). Sequencing research and the industrial scheduling problem. In S. E. Elmaghraby (Ed.), Symposium on the theory of scheduling and its applications. New York: Springer.

    Google Scholar 

  • Patterson, J. H., Słowiński, R., Talbot, F. B., & Węglarz, J. (1990). Computational experience with a backtracking algorithm for solving a general class of precedence and resource constrained project scheduling problem. European Journal of Operational Research, 49, 68–79.

    Article  Google Scholar 

  • Rommelfanger, H. (1990). An interactive method for solving multiobjective fuzzy linear programming problems. In R. Slowinski & J. Teghem (Eds.), Stochastic versus fuzzy approaches to multiobjective mathematical programming under uncertainty (pp. 279–299). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Serafini, P. (1992). Simulated annealing for multiple objective optimization problems. In: Proceedings of the 10th international conference on multiple criteria decision making, Taipei (pp. 87–96).

  • Serafini, P. (1994). Simulated annealing for multiple objective optimization problems. In G. H. Tzeng, H. F. Wang, V. P. Wen, & P. L. Yu (Eds.), Multiple criteria decision making (pp. 283–292). Berlin: Springer.

    Google Scholar 

  • Słowiński, R., Soniewicki, B., & Węglarz, J. (1994). DSS for multiobjective project scheduling. European Journal of Operational Research, 79, 220–229.

    Article  Google Scholar 

  • Sprecher, A., & Drexl, A. (1998). Multi-mode resource-constrained project scheduling by a simple, general and powerful sequencing algorithm. European Journal of Operational Research, 107, 431–450.

    Article  Google Scholar 

  • Steuer, R. (1986). Multiple criteria optimization—theory, computation and applications. New York: Wiley.

    Google Scholar 

  • Stinson, J. P., Davis, E. W., & Khumawala, B. M. (1978). Multiple resource-constrained scheduling using branch and bound. AIIE Transactions, 10, 252–259.

    Google Scholar 

  • T’Kindt, V., & Billaut, J.-C. (2002). Multicriteria scheduling: theory, models and algorithms. Berlin–New York: Springer.

    Google Scholar 

  • Xu, J., & Bailey, G. (2001). The airport gate assignment problem: mathematical model and a tabu search algorithm. In Proceedings of the 34th annual Hawaii international conference on system sciences, IEEE.

  • Yan, S., & Huo, C. (2001). Optimization of multiple objective gate assignments. Transportation Research, 35A, 413–432.

    Google Scholar 

  • Yan, S., & Tang, C. H. (2007). A heuristic approach for airport gate assignment for stochastic flight delays. European Journal of Operational Research, 180, 547–567.

    Article  Google Scholar 

  • Zadeh, L. (1978). Fuzzy sets as a basic for a theory of possibility. Fuzzy Sets and Systems, 1, 3–28.

    Article  Google Scholar 

  • Zimmermann, H.-J. (2001). Fuzzy set theory and its applications. Norwell: Kluwer Academic.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yury Nikulin.

Additional information

This work has been supported by the German Science Foundation (DFG) through the grant “Planung der Bodenabfertigung an Flughäfen” (Dr 170/9-1, 9-2 and Pe 514/10-2).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikulin, Y., Drexl, A. Theoretical aspects of multicriteria flight gate scheduling: deterministic and fuzzy models. J Sched 13, 261–280 (2010). https://doi.org/10.1007/s10951-009-0112-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10951-009-0112-1

Keywords

Navigation