Skip to main content
Log in

Spatial variations of b-value and crustal stress in the Pyrenees

  • ORIGINAL ARTICLE
  • Published:
Journal of Seismology Aims and scope Submit manuscript

Abstract

The seismicity in the Pyrenees is continuous and well surveyed since more than 20 years. We use the catalogue of seismicity between 1997 and 2013 to explore the spatial variations of the b-value, which corresponds to the slope of the frequency-magnitude distribution of the earthquakes. Especially, variations of the b-value characterise the state of stress of the crust, possibly highlighting a deficit of large earthquake occurrence. We estimate the differential crustal stress from the b-value using a relationship published by Scholz (Geophys Res Lett 42:1399–1402, 2015). We also estimate the stress drop variations by determining a power law which links the magnitude to the seismic source radius in the Pyrenees. We focus on the depth variations and we analyse vertical profiles of b-value, differential stress and stress drop, first in the whole Pyrenean belt, then in 10 subregions. The b-values are generally smaller than 1, except in the uppermost 3–5 km where the obtained high values could be linked to the presence of fluids. Downward, the b-values decrease slowly or remain constant until a depth of increase, which could correspond to the brittle-ductile limit of the crust. We propose that this depth and the regional and vertical variations of the b-values are related to the regional tectonic context and possibly to the density heterogeneities. We also suggest that stress drop and differential stress are linearly correlated and that the stress drop is at least 1.8‰ of the differential stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Asensio E, Khazaraddze G, Echeverria A, King RW, Vilajosana I (2012) GPS studies of active deformation in the Pyrenees. Geophys J Int 190:913–921. https://doi.org/10.1111/j.1365-246X.2012.05525.x

    Article  Google Scholar 

  • Bachmann C, Wiemer S, Goertz-Allmann BP, Woessner J (2012) Influence of pore-pressure on the event-size distribution of induced earthquakes. Geophys Res Lett 39:L09302. https://doi.org/10.1029/2012GL051480

    Article  Google Scholar 

  • Baize S, Cushing E, Lemeille F, Jomard H (2013) Updated seismotectonic zoning scheme of Metropolitan France, with reference to geologic and seismotectonic data. Bull Soc Géol Fr 184:225–259

    Article  Google Scholar 

  • Bardainne T, Dubos-Sallée N, Sénéchal G, Gaillot P, Perroud H (2008) Analysis of the induced seismicity of the Lacq gas field (southwestern France) and model of deformation. Geophys J Int 172:1151–1162. https://doi.org/10.1111/j.1365-246X.2007.03705.x

    Article  Google Scholar 

  • Cara M, Cansi Y, Schlupp A et al (2015) SI-Hex: a new catalogue of instrumental seismicity for metropolitan France. Bull Soc Géol Fr 186:3–19

    Article  Google Scholar 

  • Chevrot S, Sylvander M, Delouis B (2011) A preliminary catalog of moment tensors for the Pyrenees. Tectonophysics 510:239–251. https://doi.org/10.1016/j.tecto.2011.07.011

    Article  Google Scholar 

  • Chevrot S, Villasenor A, Sylvander M et al (2014) High-resolution imaging of the Pyrenees and Massif Central from the data of the PYROPE and IBERARRAY portable array deployments. J Geophys Res Solid Earth 119:6399–6420. https://doi.org/10.1002/2014JB010953

    Article  Google Scholar 

  • Choukroune P (1992) Tectonic evolution of the Pyrenees. Annu Rev Earth Planet Sci 20:143–158

    Article  Google Scholar 

  • Daignières M, de Cabissole B, Gallart J, Hirn A, Torne M, Team Ecors Pyrenees (1989) Geophysical constraints on the deep structure along the ECORS Pyrenees line. Tectonics 8:1051–1058

    Article  Google Scholar 

  • Daignières M, Gallart J, Banda E, Hirn A (1982) Implications of the seismic structure for the orogenic evolution of the Pyrenean range. Earth Planet Sci Lett 57:88–100

    Article  Google Scholar 

  • De Vicente G, Cloetingh S, Munoz-Martin A, Olaiz A, Stich D, Vegas R, Galindo-Zaldivar J, Fernandez-Lozano J (2008) Inversion of moment tensor focal mechanisms for active stresses around the microcontinent Iberia: tectonic implications. Tectonics 27:TC1009. https://doi.org/10.1029/2006TC002093

    Article  Google Scholar 

  • Drouet S, Souriau A, Cotton F (2005) Attenuation, seismic moments, and site effects for weak-motion events: application to the Pyrenees. Bull Seism Soc Am 95:1731–1748. https://doi.org/10.1785/0120040105

    Article  Google Scholar 

  • Dumont T, Replumaz A, Rouméjon S, Briais A, Rigo A, Bouillin JP (2015) Microseismicity of the Béarn range: reactivation of inversion and collision structures at the northern edge of the Iberian plate. Tectonics 34:934–950. https://doi.org/10.1002/2014TC003816

    Article  Google Scholar 

  • Dura-Gomez I, Talwani P (2010) Reservoir-induced seismicity associated with the Itoiz Reservoir, Spain: a case study. Geophys J Int 181:343–356. https://doi.org/10.1111/j.1365-246X.2009.04462.x

    Article  Google Scholar 

  • El-Isa ZH, Eaton DW (2014) Spatiotemporal variations in the b-value of earthquake magnitude–frequency distributions: Classification and causes. Tectonophysics 615–616:1–11. https://doi.org/10.1016/j.tecto.2013.12.001

    Article  Google Scholar 

  • Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc Roy Soc Serie A 241:376–391

    Article  Google Scholar 

  • Farrell J, Husen S, Smith RB (2009) Earthquake swarm and b-value characterization of the Yellowstone volcano-tectonic system. J Volcanol Geotherm Res 188:260–276. https://doi.org/10.1016/j.jvolgeores.2009.08.008

    Article  Google Scholar 

  • Gagnepain-Beyneix J (1987) Étude expérimentale des tremblements de terre. Exemple de la région d’Arette (France). Doctorat d’État, Université Paris 6, France, pp. 250

  • Gagnepain-Beyneix J (1985) Variation of source parameters of small western Pyrenean earthquakes and their relation to main shock occurrence. Ann Geophys 3:381–394

    Google Scholar 

  • Gagnepain-Beyneix J, Haessler H, Modiano T (1982) The pyrenean earthquake of February 29, 1980: an example of complex faulting. Tectonophysics 85:273–290

    Article  Google Scholar 

  • Gallart J, Daignières M, Banda E, Surinach E, Hirn A (1980) The eastern Pyrenean domain: lateral variations at crust-mantle level. Ann Geophys 36:141–158

    Google Scholar 

  • Gallart J, Daignières M, Gagnepain-Beyneix J, Hirn A (1985) Relationship between deep structure and seismicity in the western Pyrenees. Ann Geophys 3:239–248

    Google Scholar 

  • Genti M, Chery J, Vernant P, Rigo A (2016) Impact of gravity forces and topography denudation on normal faulting in central–western Pyrenees: insights from 2D numerical models. Compt Rendus Geosci 348:173–183. https://doi.org/10.1016/j.crte.2015.08.004

    Article  Google Scholar 

  • Goebel THW, Hauksson E, Shearer PM, Ampuero JP (2015) Stress-drop heterogeneity within tectonically complex regions: a case study of San Gorgonio Pass, southern California. Geophys J Int 202:514–528. https://doi.org/10.1093/gji/ggv160

    Article  Google Scholar 

  • Görgün E (2013) Analysis of the b-values before and after the 23 October 2011 Mw 7.2 Van–Erciş, Turkey earthquake. Tectonophysics 603:213–221. https://doi.org/10.1016/j.tecto.2013.05.030

    Article  Google Scholar 

  • Görgün E, Zang A, Bohnhoff M, Milkereit C, Dresen G (2009) Analysis of Izmit aftershocks 25 days before the November 12th 1999 Düzce earthquake, Turkey. Tectonophysics 474:507–515. https://doi.org/10.1016/j.tecto.2009.04.027

    Article  Google Scholar 

  • Gutenberg B, Richter CF (1944) Frequency of earthquakes in California. Bull Seism Soc Am 34:185–188

    Google Scholar 

  • Hanks TC, Kanamori H (1979) A moment magnitude scale. J Geophys Res 84:2348–2350

    Article  Google Scholar 

  • Hoang Trong P, Rouland D (1971) Mécanisme au foyer du séisme d’Arette, Pyrénées Atlantique. CR Acad Sci Paris 272:3249–3251

    Google Scholar 

  • Jimenez A, Garcia-Garcia JM, Romacho MD, Garcia-Jerez A, Luzon F (2015) Source parameters of earthquakes recorded near the Itoiz dam (northern Spain). Pure Appl Geophys 172:3163–3177. https://doi.org/10.1007/s00024-014-0883-y

    Article  Google Scholar 

  • Lacan P, Ortuno M (2012) Active tectonics of the Pyrenees: a review. J Iber Geol 38:9–30. https://doi.org/10.5209/rev_JIGE.2012.v38.n1.39203

    Article  Google Scholar 

  • Lambert J, Levret-Albaret A (1996). Mille ans de séismes en France, Ouest edition. ed. BRGM

  • Levet S, Toutain JP, Munoz M, Berger G, Negrel P, Jendrzejewski N, Agrinier P, Sortino F (2002) Geochemistry of the Bagnères-de-Bigorre thermal waters from the north Pyrenean zone (France). Geofluids 2:25–40

    Article  Google Scholar 

  • Madariaga R (1979) On the relation between seismic moment and stress drop in the presence of stress and strength heterogeneity. J Geophys Res 84:2243–2250

    Article  Google Scholar 

  • Modiano T, Hatzfeld D (1982) Experimental study of the spectral content for shallow earthquakes. Bull Soc Seism Am 72:1739–1758

    Google Scholar 

  • Mori J, Abercrombie RE (1997) Depth dependence of earthquake frequency-magnitude distributions in California: implications for rupture initiation. J Geophys Res 102:15,081–15,090

    Article  Google Scholar 

  • Njike-Kassala JD, Souriau A, Gagnepain-Beyneix J, Martel L, Vadell M (1992) Frequency-magnitude relationship and Poisson’s ratio in the Pyrenees, in relation to earthquake distribution. Tectonophysics 215:363–369

    Article  Google Scholar 

  • Nocquet JM (2012) Present-day kinematics of the Mediterranean: a comprehensive overview of GPS results. Tectonophysics 579:220–242. https://doi.org/10.1016/j.tecto.2012.03.037

    Article  Google Scholar 

  • Nocquet JM, Calais E (2004) Geodetic measurements of crustal deformation in the western Mediterranean and Europe. Pure Appl Geophys 161:661–681. https://doi.org/10.1007/s00024-003-2468-z

    Article  Google Scholar 

  • Olivera C, Redondo E, Lambert J, Riera A, Roca A (2006) The earthquakes of the XIV and XV centuries in Catalonia (NE Spain). Presented at the First European Conference on Earthquake Engineering and Seismology, Geneva, Switzerland

  • Ortuno M, Queralt P, Marti A, Ledo J, Masana E, Perea H, Santanach P (2008) The north Maladeta fault (Spanish Central Pyrenees) as the Vielha 1923 earthquake seismic source: recent activity revealed by geomorpholoqical and geophysical research. Tectonophysics 453:246–262

    Article  Google Scholar 

  • Pauchet H, Rigo A, Rivera L, Souriau A (1999) A detailed analysis of the February 1996 aftershock sequence in the eastern Pyrenees, France. Geophys J Int 137:107–127

    Article  Google Scholar 

  • Perea H (2009) The Catalan seismic crisis (1427 and 1428; NE Iberian Peninsula): geological sources and earthquake triggering. J Geodyn 47:259–270. https://doi.org/10.1016/j.jog.2009.01.002

    Article  Google Scholar 

  • Rigo A (2010) Precursors and fluid flows in the case of the 1996, ML=5.2 Saint-Paul-de-Fenouillet earthquake (Pyrenees, France): a complete pre-, co- and post-seismic scenario. Tectonophysics 480:109–118. https://doi.org/10.1016/j.tecto.2009.09.027

    Article  Google Scholar 

  • Rigo A, Pauchet H, Souriau A, Grésillaud A, Nicolas M, Olivera C, Figueras S (1997) The February 1996 earthquake sequence in the eastern Pyrenees: first results. J Seismol 1:3–14

    Article  Google Scholar 

  • Rigo A, Souriau A, Dubos N, Sylvander M, Ponsolles C (2005) Analysis of the seismicity in the central part of the Pyrenees (France), and tectonic implications. J Seismol 9:211–222

    Article  Google Scholar 

  • Rigo A, Vernant P, Feigl KL, Goula X, Khazaradze G, Talaya J, Morel L, Nicolas J, Baize S, Chéry J, Sylvander M (2015) Present-day deformation of the Pyrenees revealed by GPS surveying and earthquake focal mechanisms until 2011. Geophys J Int 201:947–964. https://doi.org/10.1093/gji/ggv052

    Article  Google Scholar 

  • Scholz CH (2015) On the stress dependence of the earthquake b value. Geophys Res Lett 42:1399–1402. https://doi.org/10.1002/2014GL062863

    Article  Google Scholar 

  • Secanell R, Bertil D, Martin C, Goula X, Susagna T, Tapia M, Dominique P, Carbon D, Fleta J (2008) Probabilistic seismic hazard assessment of the Pyrenean region. J Seismol 12:323–341. https://doi.org/10.1007/s10950-008-9094-2

    Article  Google Scholar 

  • Sibson RH (1984) Roughness at the base of the seismogenic zone: contributing factors. J Geophys Res Solid Earth 89:5791–5799

    Article  Google Scholar 

  • Sibson RH (1982) Fault zone models, heat flow, and the depth distribution of earthquakes in the continental crust of the United States. Bull Seism Soc Am 72:151–153

    Google Scholar 

  • Souriau A, Pauchet H (1998) A new synthesis of Pyrenean seismicity and its tectonic implications. Tectonophysics 290:221–244

    Article  Google Scholar 

  • Souriau A, Rigo A, Sylvander M, Benhamed S, Grimaud F (2014) Seismicity in central-western Pyrenees (France): a consequence of the subsidence of dense exhumed bodies. Tectonophysics 621:123–131. https://doi.org/10.1016/j.tecto.2014.02.008

    Article  Google Scholar 

  • Souriau A, Sylvander M, Rigo A, Fels JF, Douchain JM, Ponsolles C (2001) Sismotectonique des Pyrénées: principales contraintes sismologiques. Bull Soc Géol Fr 172:25–39

    Article  Google Scholar 

  • Spada M, Tormann T, Wiemer S, Enescu B (2013) Generic dependence of the frequency-size distribution of earthquakes on depth and its relation to the strength profile of the crust. Geophys Res Lett 40:709–714. https://doi.org/10.1029/2012GL054198

    Article  Google Scholar 

  • Stich D, Martin R, Morales J (2010) Moment tensor inversion for Iberia-Maghreb earthquakes 2005–2008. Tectonophysics 483:390–398. https://doi.org/10.1016/j.tecto.2009.11.006

    Article  Google Scholar 

  • Sylvander M (1999) Identifying an asperity through 3-D mapping of the frequency-magnitude distribution. Geophys Res Lett 26:2657–2660

    Article  Google Scholar 

  • Sylvander M, Souriau A, Rigo A, Tocheport A, Toutain JP, Ponsolles C, Benahmed S (2008) The November 2006, ML = 5.0 earthquake near Lourdes (French Pyrenees): normal faulting in an active mountain belt. Geophys J Int 175:649–664. https://doi.org/10.1111/j.1365-246X.2008.03911.x

    Article  Google Scholar 

  • Tal Y, Hager BH (2015) An empirical study of the distribution of earthquakes with respect to rock type and depth. Geophys Res Lett 42:7406–7413. https://doi.org/10.1002/2015GL064934

    Article  Google Scholar 

  • Tormann T, Wiemer S, Mignan A (2014) Systematic survey of high-resolution b value imaging along Californian faults: inference on asperities. J Geophys Res Solid Earth 119:2029–2054. https://doi.org/10.1002/2013JB010867

    Article  Google Scholar 

  • Toutain JP, Munoz M, Pinault JL, Levet S, Sylvander M, Rigo A, Escalier J (2006) Using the mixing function to constrain co-seismic hydrochemical effects: an example from French Pyrenees. Pure Appl Geophys 163:723–744

    Article  Google Scholar 

  • Vacher P, Souriau A (2001) A three-dimensional model of the Pyrenean deep structure based on gravity modelling, seismic images and petrological constraints. Geophys J Int 145:460–470

    Article  Google Scholar 

  • Vernant P, Hivert F, Chéry J, Steer P, Cattin R, Rigo A (2013) Erosion-induced isostatic rebound triggers extension in low convergent mountain ranges. Geology 41(4):467–470. https://doi.org/10.1130/G33942.1

    Article  Google Scholar 

  • Vissers RLM, Meijer PT (2012) Iberian plate kinematics and Alpine collision in the Pyrenees. Earth-Sci Rev 114:61–83. https://doi.org/10.1016/j.earscirev.2012.05.001

    Article  Google Scholar 

  • Wang JH (2016) A mechanism causing b-value anomalies prior to a mainshock. Bull Seism Soc Am 106:1663–1671. https://doi.org/10.1785/0120150335

    Article  Google Scholar 

  • Wiemer S (2001) A software package to analyse siesmicity: ZMAP. Seism Res Lett 72:374–383

    Article  Google Scholar 

  • Wyss M, Pacchiani F, Deschamps A, Patau G (2008) Mean magnitude variations of earthquakes as a function of depth: different crustal stress distribution depending on tectonic setting. Geophys Res Lett 35:L01307. https://doi.org/10.1029/2007GL031057

    Article  Google Scholar 

  • Zhang S, Zhou S (2016) Spatial and temporal variation of b-values in southwest China. Pure Appl Geophys 173:85–96. https://doi.org/10.1007/s00024-015-1044-7

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Thomas Braun and two anonymous reviewers whose very constructive comments allowed us to improve our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rigo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rigo, A., Souriau, A. & Sylvander, M. Spatial variations of b-value and crustal stress in the Pyrenees. J Seismol 22, 337–352 (2018). https://doi.org/10.1007/s10950-017-9709-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10950-017-9709-6

Keywords

Navigation