Skip to main content
Log in

Experimental Determination of the Orientation of Tilted Magnetic Anisotropy by Using Angle-Resolved Hall Effect Signals

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The orientation of the tilted magnetic anisotropy has crucial importance in many spintronic devices. However, it is very challenging to determine it especially in very small structures produced by lithography. Here, we propose a new experimental method to directly and accurately measure both the polar and azimuthal angles of a tilted magnetic anisotropy by using anomalous and planar Hall effects together. We named this as the angle-resolved Hall effect signals’ (ARHES) method. By using the proposed method, an obliquely deposited multilayer structure of Pt(4)/[Co(0.5)/Pt(0.5)] × 5/IrMn(8)/Pt(3) (nm) has been investigated. The out-of-plane (24.4°) and in-plane (219°) angles of the tilted magnetic anisotropy in the sample have been successfully determined from the experiments. The accuracy of the ARHES method has also been confirmed by theoretical calculations that give the same polar and azimuthal angles of the magnetic anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shirsath, S.E., Liu, X., Yasukawa, Y., Li, S., Morisako, A.: Switching of magnetic easy-axis using crystal orientation for large perpendicular coercivity in CoFe2O4 thin film. Sci Rep. 6, 30074 (2016)

    Article  ADS  Google Scholar 

  2. Oh, Y.-W., Lee, K.-D., Jeong, J.-R., Park, B.-G.: Interfacial perpendicular magnetic anisotropy in CoFeB/MgO structure with various underlayers. J Appl Phys. 115, 17C724 (2014)

    Article  Google Scholar 

  3. Ranno, L., Llobet, A., Tiron, R., Favre-Nicolin, E.: Strain-induced magnetic anisotropy in epitaxial manganite films. Appl Surf Sci. 188, 170–175 (2002)

    Article  ADS  Google Scholar 

  4. Arribas, A.G., Fernández, E., Svalov, A.V., Kurlyandskaya, G.V., Barrainkua, A., Navas, D., Barandiaran, J.M.: Tailoring the magnetic anisotropy of thin film permalloy microstrips by combined shape and induced anisotropies. Eur Phys J B. 86, 136 (2013)

    Article  ADS  Google Scholar 

  5. Wang, J.-P.: Tilting for the top. Nat Mater. 4, 191 (2005)

    Article  ADS  Google Scholar 

  6. You, L., Lee, O., Bhowmik, D., Labanowski, D., Hong, J., Bokor, J., Salahuddin, S.: Switching of perpendicularly polarized nanomagnets with spin orbit torque without an external magnetic field by engineering a tilted anisotropy. Proc Natl Acad Sci. 112, 10310 (2015)

    Article  ADS  Google Scholar 

  7. Mohanan, P.V., Ganesh, K.R., Anil Kumar, P.S.: Spin Hall effect mediated current-induced deterministic switching in all-metallic perpendicularly magnetized Pt/Co/Pt trilayers. Phys Rev B. 96, 104412 (2017)

    Article  ADS  Google Scholar 

  8. Łazarski, S., Skowroński, W., Kanak, J., Karwacki, Ł., Ziętek, S., Grochot, K., Stobiecki, T., Stobiecki, F.: Field-free spin-orbit-torque switching in Co/Pt/Co multilayer with mixed magnetic anisotropies. Phys Rev Appl. 12, 014006 (2019)

    Article  ADS  Google Scholar 

  9. Eden, N., Kopnov, G., Fraenkel, S., Goldstein, M., Gerber, A.: Longitudinal and transverse magnetoresistance in films with tilted out-of-plane magnetic anisotropy. Phys Rev B. 99, 064432 (2019)

    Article  ADS  Google Scholar 

  10. Sbiaa, R., Law, R., Tan, E.L., Liew, T.: Spin transfer switching enhancement in perpendicular anisotropy magnetic tunnel junctions with a canted in-plane spin polarizer. J Appl Phys. 105, 013910 (2009)

    Article  ADS  Google Scholar 

  11. Zha, C.L., Fang, Y.Y., Nogués, J., Åkerman, J.: Improved magnetoresistance through spacer thickness optimization in tilted pseudo spin valves based on L10 (111)-oriented FePtCu fixed layers. J Appl Phys. 106, 053909 (2009)

    Article  ADS  Google Scholar 

  12. Sbiaa, R., Piramanayagam, S.N.: Recent developments in spin transfer torque MRAM. Phys Status Solidi Rapid Res Lett. 11, 1700163 (2017)

    Article  ADS  Google Scholar 

  13. Skowroński, W., Stobiecki, T., Wrona, J., Reiss, G., Van Dijken, S.: Zero-field spin torque oscillator based on magnetic tunnel junctions with a tilted CoFeB free layer. Appl Phys Express. 5, 063005 (2012)

    Article  ADS  Google Scholar 

  14. Torrejon, J., Garcia-Sanchez, F., Taniguchi, T., Sinha, J., Mitani, S., Von Kim, J., Hayashi, M.: Current-driven asymmetric magnetization switching in perpendicularly magnetized CoFeB/MgO heterostructures. Phys Rev B. 91, 214434 (2015)

    Article  ADS  Google Scholar 

  15. Garello, K., Avci, C.O., Miron, I.M., Baumgartner, M., Ghosh, A., Auffret, S., Boulle, O., Gaudin, G., Gambardella, P.: Ultrafast magnetization switching by spin-orbit torques. Appl Phys Lett. 105, 212402 (2014)

    Article  ADS  Google Scholar 

  16. Li, S., Goolaup, S., Kwon, J., Luo, F., Gan, W., Lew, W.S.: Deterministic spin-orbit torque induced magnetization reversal in Pt/[Co/Ni] n /Co/Ta multilayer hall bars. Sci Rep. 7, 972 (2017)

    Article  ADS  Google Scholar 

  17. Chuang, T.C., Pai, C.F., Huang, S.Y.: Cr-induced perpendicular magnetic anisotropy and field-free spin-orbit-torque switching. Phys Rev Appl. 11, 061005 (2019)

    Article  ADS  Google Scholar 

  18. Louail, L., Ounadjela, K., Stamps, R.L.: Temperature-dependent thin-film cone states in epitaxial Co/Pt multilayers. J Magn Magn Mater. 167, L189 (1997)

    Article  ADS  Google Scholar 

  19. Kim, W.-S., Andrä, W., Kleemann, W.: Influence of interfaces on the perpendicular magnetic anisotropy in Tb/Fe multilayers. Phys Rev B. 58, 6346 (1998)

    Article  ADS  Google Scholar 

  20. Ha, K., O’Handley, R.C.: Magnetization canting in epitaxial Cu/Ni/Cu/Si(001) films. J Appl Phys. 87, 5944 (2000)

    Article  ADS  Google Scholar 

  21. Berger, A., Pufall, M.R.: Generalized magneto-optical ellipsometry. Appl Phys Lett. 71, 965 (1997)

    Article  ADS  Google Scholar 

  22. Berger, A., Pufall, M.R.: Quantitative vector magnetometry using generalized magneto-optical ellipsometry. J Appl Phys. 85, 4583 (1999)

    Article  ADS  Google Scholar 

  23. Hille, M., Frauen, A., Beyersdorff, B., Kobs, A., Heße, S., Frömter, R., Oepen, H.P.: Direct method for measuring the canting angle of magnetization. J Appl Phys. 113, 023902 (2013)

    Article  ADS  Google Scholar 

  24. Keatley, P.S., Kruglyak, V.V., Neudert, A., Delchini, M., Hicken, R.J., Childress, J.R., Katine, J.A.: Time- and vector-resolved magneto-optical Kerr effect measurements of large angle precessional reorientation in a 2×2 μm2 ferromagnet. J Appl Phys. 105, 07D308 (2009)

    Article  Google Scholar 

  25. Krebs, J.J., Jonker, B.T., Prinz, G.A.: Magnetic properties of single-crystal Fe films grown on ZnSe epilayers by molecular-beam epitaxy. J Appl Phys. 61, 3744 (1987)

    Article  ADS  Google Scholar 

  26. Harzer, J.V., Hillebrands, B., Stamps, R.L., Güntherodt, G., England, C.D., Falco, C.M.: Magnetic properties of Co/Pd multilayers determined by Brillouin light scattering and SQUID magnetometry. J Appl Phys. 69, 2448 (1991)

    Article  ADS  Google Scholar 

  27. Ogrin, F.Y., Lee, S.L., Ogrin, Y.F.: Investigation of perpendicular anisotropy of a thin film using the planar Hall effect. J Magn Magn Mater. 219, 331 (2000)

    Article  ADS  Google Scholar 

  28. Kawaguchi, M., Shimamura, K., Fukami, S., Matsukura, F., Ohno, H., Moriyama, T., Chiba, D., Ono, T.: Current-induced effective fields detected by magnetotransport measurements. Appl Phys Express. 6, 113002 (2013)

    Article  ADS  Google Scholar 

  29. Hayashi, M., Kim, J., Yamanouchi, M., Ohno, H.: Quantitative characterization of the spin-orbit torque using harmonic Hall voltage measurements. Phys Rev B. 89, 144425 (2014)

    Article  ADS  Google Scholar 

  30. Garello, K., Miron, I.M., Avci, C.O., Freimuth, F., Mokrousov, Y., Blügel, S., Auffret, S., Boulle, O., Gaudin, G., Gambardella, P.: Symmetry and magnitude of spin-orbit torques in ferromagnetic heterostructures. Nat Nanotechnol. 8, 587 (2013)

    Article  ADS  Google Scholar 

  31. Hong, K., Giordano, N.: Approach to mesoscopic magnetic measurements. Phys Rev B. 51, 9855 (1995)

    Article  ADS  Google Scholar 

  32. Tang, H.X., Kawakami, R.K., Awschalom, D.D., Roukes, M.L.: Giant planar Hall effect in epitaxial (Ga, Mn) As Devices. Phys Rev Lett. 90, 107201 (2003)

    Article  ADS  Google Scholar 

  33. R.A. Serway and J. John W. Jewett, Physics for scientists and engineers with modern physics, 9 Edn, Physical Sciences: Mary Finch, 2010.

  34. Kim, J., Sinha, J., Mitani, S., Hayashi, M., Takahashi, S., Maekawa, S., Yamanouchi, M., Ohno, H.: Anomalous temperature dependence of current-induced torques in CoFeB/MgO heterostructures with Ta-based underlayers. Phys Rev B. 89, 174424 (2014)

    Article  ADS  Google Scholar 

  35. Qiu, X., Deorani, P., Narayanapillai, K., Lee, K.S., Lee, K.J., Lee, H.W., Yang, H.: Angular and temperature dependence of current induced spin-orbit effective fields in Ta/CoFeB/MgO nanowires. Sci Rep. 4, 4491 (2014)

    Article  Google Scholar 

  36. Liu, Y., Qiu, J., Lim, S.T., Toh, S.L., Zhu, Z., Han, G., Zhu, K.: Strong perpendicular magnetic anisotropy in [Co/Pt] n ultrathin superlattices. Appl Phys Express. 10, 013005 (2017)

    Article  ADS  Google Scholar 

  37. Barman, A., Wang, S., Hellwig, O., Berger, A., Fullerton, E.E., Schmidt, H.: Ultrafast magnetization dynamics in high perpendicular anisotropy [Co/Pt]n multilayers. J Appl Phys. 101, 09D102 (2007)

    Article  Google Scholar 

  38. Öztürk, M., Akdoğan, N.: Design of a multifunctional sample probe for transport measurements. Turk J Phys. 42, 97–103 (2018)

    Google Scholar 

  39. E. Demirci, Investigation of perpendicular exchange bias effect in magnetoelectric Cr2O3 based thin films, PhD Thesis, Gebze TechnicalUniversity, Department of Physics, 2016.

  40. Öner, Y., Aktaş, B.: Magnetization measurements and computer simulations for the magnetic hysteresis losses of reentrant Ni100-xMnx and NiMn alloys. Phys Rev B. 42, 2425 (1990)

    Article  ADS  Google Scholar 

  41. O’Shea, M.J., Lee, K.M., Fert, A.: The magnetic state and its macroscopic anisotropy in amorphous rare-earth alloys (invited). J Appl Phys. 67, 5769 (1990)

    Article  ADS  Google Scholar 

  42. Schneider, M.L., Kos, A.B., Silva, T.J.: Dynamic anisotropy of thin permalloy films measured by use of angle-resolved pulsed inductive microwave magnetometry. Appl Phys Lett. 86, 202503 (2005)

    Article  ADS  Google Scholar 

  43. Geshev, J., Nicolodi, S., Pereira, L.G., Nagamine, L.C.C.M., Schmidt, J.E., Deranlot, C., Petroff, F., Rodríguez-Suárez, R.L., Azevedo, A.: Exchange bias through a Cu interlayer in an IrMn/Co system. Phys Rev B. 75, 214402 (2007)

    Article  ADS  Google Scholar 

  44. Park, J.S., Wu, J., Arenholz, E., Liberati, M., Scholl, A., Meng, Y., Hwang, C., Qiu, Z.Q.: Rotatable magnetic anisotropy of CoO/Fe/Ag(001) in ultrathin regime of the CoO layer. Appl Phys Lett. 97, 042505 (2010)

    Article  ADS  Google Scholar 

  45. Wang, G., Dong, C., Wang, W., Wang, Z., Chai, G., Jiang, C., Xue, D.: Observation of rotatable stripe domain in permalloy films with oblique sputtering. J Appl Phys. 112, 093907 (2012)

    Article  ADS  Google Scholar 

  46. Fan, X., Zhou, H., Rao, J., Zhao, X., Zhao, J., Zhang, F., Xue, D.: Magnetic field-dependent shape anisotropy in small patterned films studied using rotating magnetoresistance. Sci Rep. 5, 16139 (2015)

    Article  ADS  Google Scholar 

  47. Tacchi, S., Fin, S., Carlotti, G., Gubbiotti, G., Madami, M., Barturen, M., Marangolo, M., Eddrief, M., Bisero, D., Rettori, A., Pini, M.G.: Rotatable magnetic anisotropy in a Fe 0.8 Ga 0.2 thin film with stripe domains: dynamics versus statics. Phys Rev B. 89, 024411 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank S. Kazan, Y. Öner, and B. Rameev for their fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Pişkin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

The supporting document provides the theoretical simulations of the Hall voltages presented in the main manuscript.

ESM 1

(DOCX 590 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pişkin, H., Demirci, E., Öztürk, M. et al. Experimental Determination of the Orientation of Tilted Magnetic Anisotropy by Using Angle-Resolved Hall Effect Signals. J Supercond Nov Magn 34, 1435–1440 (2021). https://doi.org/10.1007/s10948-021-05853-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-05853-7

Keywords

Navigation