Skip to main content
Log in

Phenomenological Model of the Temperature Dependence of Hysteresis Based on the Preisach Model

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this paper, a temperature-dependent model based on Preisach theory has been developed to study the effects of temperature on hysteresis in magnetic materials. The thermal effect has been introduced through two proposed relationships between the material temperature and the parameters a and b of the Student function. The extension of the temperature-dependent Preisach model has been validated with respect to the measurements performed on a NiFe2O4 ferrite material and the results show a good agreement between the simulation and the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ladjimi, A., Mekideche, M.R.: Model for the behavior of magnetic materials hysteretic taking into account the temperature. 2009 6th International Multi-Conference on Systems, Signals and Devices, Djerba, pp. 1–6 (2009). https://doi.org/10.1109/SSD.2009.4956743.

  2. Raghunathan, A., Melikhov, Y., Snyder, J.E., Jiles, D.C.: Modeling the Temperature Dependence of Hysteresis Based on Jiles–Atherton Theory. IEEE Trans. Magn. 45(10), 3954–3957 (2009). https://doi.org/10.1109/TMAG.2009.2022744

    Article  ADS  Google Scholar 

  3. Raghunathan, A., Melikhov, Y., Snyder, J.E., Jiles, D.C.: Theoretical Model of Temperature Dependence of Hysteresis Based on Mean Field Theory. IEEE Trans. Magn. 46(6), 1507–1510 (2010). https://doi.org/10.1109/TMAG.2010.2045351

    Article  ADS  Google Scholar 

  4. Ladjimi, A., Mékideche, M.R., Babouri, A.: Thermal effects on magnetic hysteresis modelling. Arch. Electr. Eng. 61(1), 77–84 (2012)

    Article  Google Scholar 

  5. Ladjimi, A., Mékideche, M.R.: Modeling of Thermal effects on Magnetic Hysteresis using the Jiles-Atherton Model. PRZEGLĄD ELEKTROTECHNICZNY (Electrical Review), ISSN 0033-2097, R. 88 NR 4a/2012.

  6. Hussain, S., Benabou, A., Clénet, S., Lowther, D.A.: Temperature Dependence in the Jiles–Atherton Model for Non-Oriented Electrical Steels: An Engineering Approach. IEEE Trans. Magn. 54(11), 1–5 (2018, 7301205). https://doi.org/10.1109/TMAG.2018.2837126

    Article  Google Scholar 

  7. He, Z., Liu, Y., Liu, S., Lin, F.: Application of Jiles-Atherton model in description of temperature characteristics of magnetic core. Rev. Sci. Instrum. 89, 104702 (2018)

    Article  ADS  Google Scholar 

  8. Zhang, D., Jia, M., Liu, Y., Ren, Z., Koh, C.: Comprehensive Improvement of Temperature-Dependent Jiles–Atherton Model Utilizing Variable Model Parameters. IEEE Trans. Magn. 54(3), 1–4 (2018, 7300504). https://doi.org/10.1109/TMAG.2017.2755689

    Article  Google Scholar 

  9. Liu, Y., Zhang, H., Liu, S., Lin, F.: Modeling analysis of pulsed magnetization process of magnetic core based on inverse Jiles-Atherton model. Rev. Sci. Instrum. 89, 054701 (2018)

    Article  ADS  Google Scholar 

  10. Ouled Amour, Y.: Contribution à la modélisation de l’hystérésis magnétique en vue de l’analyse par éléments finis des systèmes de chauffage par induction. Thèse de doctorat Univ. Nantes, (2000)

  11. Ould Ouali, S.H., Mohelleb, H., Chaîbi, R., Féliachi, M.: Introduction de l´effet de la température dans le modèle de Preisach pour la génération des cycles d´hystérésis. J. Phys. IV France. 124, 315–320 (2005)

    Article  Google Scholar 

  12. Chen, H., Xu, Q., Xiang, Y., Huang, Y.: Temperature characteristics modeling of Preisach theory,” MATEC Web of Conferences 139, 00077 (2017), ICMITE (2017)

  13. Li, C., Tang, Z., Lin, G., Lin S., Huang, Q.: Modeling the temperature dependence of minor hysteresis loops in ferromagnetic materials. 2016 IEEE International Conference on Electronic Information and Communication Technology (ICEICT), Harbin, pp. 505-508 (2016). https://doi.org/10.1109/ICEICT.2016.7879752

  14. Monnor, T., Kanchiang, K., Yimnirun, R., Laosiritaworn, Y.: Preisach Modeling on Temperature Dependent Mean-Field Ising-Hysteresis. Ferroelectrics. 459(1), 128–133 (2014). https://doi.org/10.1080/00150193.2013.849177

    Article  Google Scholar 

  15. Dafri, M., Lajimi, A., Mendaci, S., Babouri, A.: Modeling of Magnetic Hysteresis Using Student Distribution. J. Supercond. Nov. Magn. 33, 3865 (2020). https://doi.org/10.1007/s10948-020-05650-8

    Article  Google Scholar 

  16. Preisach, F.: Über Die Magnetische Nachwirkung. Z. Phys. 94, 277 (1935). https://doi.org/10.1007/BF01349418

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Directorate General for Scientific Research and Technological Development (DG-RSDT) of Algeria under PRFU project number A01L07UN240120190001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelaziz Ladjimi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dafri, M., Ladjimi, A., Mendaci, S. et al. Phenomenological Model of the Temperature Dependence of Hysteresis Based on the Preisach Model. J Supercond Nov Magn 34, 1453–1458 (2021). https://doi.org/10.1007/s10948-021-05849-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-05849-3

Keywords

Navigation