Skip to main content
Log in

Fabrication and Characterization of Superconducting Films for Superconductor-Topological Insulator Hybrid Devices

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Proximation of s-wave superconductivity to topological materials is an effective way to realize Majorana modes in condensed matter physics. In order to fabricate a successful device, the superconducting material plays a crucial role since selection of material, growth method, applicable critical temperature, adequate critical magnetic field, transparent electrical contact, and thus proper work function, needs to be deliberately considered. Here, we report the fabrications and transport measurements for two types of superconducting thin films, tantalum (Ta) and niobium nitride (NbN), at various growth conditions. Both Ta and NbN films show applicable potentials as the superconducting electrodes. We also demonstrate the proximity effect induced supercurrent state in an InAs/GaSb bilayer device with superconducting Ta electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wilczek, F.: Majorana returns. Nat. Phys. 5, 614–618 (2009)

    Article  Google Scholar 

  2. Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  3. Kitaev, A.: Unpaired Majorana fermions in quantum wires. Physics-Uspekhi. 44, 131–136 (2001)

    Article  ADS  Google Scholar 

  4. Oreg, Y., Refael, G., Von Oppen, F.: Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett. 105, 177002 (2010)

    Article  ADS  Google Scholar 

  5. Fu, L., Kane, C.L.: Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008)

    Article  ADS  Google Scholar 

  6. Thiaville, A., Kortright, J.B.: Quantum spin Hall effect and topological phase transition in HgTe quantum Wells. Science. 314, 1757–1761 (2006)

    Article  Google Scholar 

  7. Rokhinson, L.P., Liu, X., Furdyna, J.K.: The fractional a.c. Josephson effect in a semiconductor-superconductor nanowire as a signature of Majorana particles. Nat. Phys. 8, 795–799 (2012)

    Article  Google Scholar 

  8. Lutchyn, R.M., Stanescu, T.D., Sarma, S.D.: Search for Majorana fermions in multiband semiconducting nanowires. Phys. Rev. Lett. 106, 127001 (2011)

    Article  ADS  Google Scholar 

  9. Mourik, V., et al.: Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science. 336, 1003–1008 (2012)

    Article  ADS  Google Scholar 

  10. Chang, W., et al.: Hard gap in epitaxial semiconductor – superconductor nanowires. Nat. Nanotechnol. 10, 232–236 (2015)

    Article  ADS  Google Scholar 

  11. Williams, J.R., et al.: Unconventional Josephson effect in hybrid superconductor-topological insulator devices. Phys. Rev. Lett. 109, 056803 (2012)

    Article  ADS  Google Scholar 

  12. Sun, H., et al.: Majorana zero mode detected with spin selective Andreev reflection in the vortex of a topological superconductor. Phys. Rev. Lett. 116, 257003 (2016)

    Article  ADS  Google Scholar 

  13. Bocquillon, E., et al.: Gapless Andreev bound states in the quantum spin Hall insulator HgTe. Nat. Nanotechnol. 12, 137–143 (2016)

    Article  ADS  Google Scholar 

  14. Shi, X., Yu, W., Hawkins, S.D., Klem, J.F., Pan, W.: McMillan-Rowell like oscillations in a superconductor-InAs/GaSb-superconductor junction. Appl. Phys. Lett. 107, 105–108 (2015)

    Google Scholar 

  15. Shi, X., Yu, W., Jiang, Z., Andrei Bernevig, B., Pan, W., Hawkins, S.D., Klem, J.F.: Giant supercurrent states in a superconductor-InAs/GaSb-superconductor junction. J. Appl. Phys. 118, 133905 (2015)

    Article  ADS  Google Scholar 

  16. He, Q.L., et al.: Chiral Majorana fermion modes in a quantum anomalous Hall insulator – superconductor structure. Science. 357, 294–299 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  17. Nadj-perge, S., Drozdov, I.K., Li, J., Chen, H., Jeon, S.: Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science. 346, 602–607 (2014)

    Article  ADS  Google Scholar 

  18. Gerstenberg, D., Hall, P.M.: Superconducting thin films of niobium, tantalum, tantalum nitride, tantalum carbide, and niobium nitride. J. Electrochem. Soc. 111, 936 (2007)

    Article  Google Scholar 

  19. Park, S., Shin, J., Kim, E.: Scaling analysis of field-tuned superconductor-insulator transition in two-dimensional tantalum thin films. Sci. Rep. 7, 1–10 (2017)

    Article  ADS  Google Scholar 

  20. Hazra, D., et al.: Superconducting properties of very high quality NbN thin films grown by high temperature chemical vapor deposition. Supercond. Sci. Technol. 29, 0–5 (2016)

    Article  Google Scholar 

  21. Thakoor, S., Lamb, J.L., Thakoor, A.P., Khanna, S.K.: High Tc superconducting NbN films deposited at room temperature. J. Appl. Phys. 58, 4643–4648 (1985)

    Article  ADS  Google Scholar 

  22. Maung, W.N., Butler, D.P., Huang, C.: Fabrication of NbN thin films by reactive sputtering. J. Vac. Sci. Technol. A Vacuum Surf. Film. 11, 615–620 (2002)

    Article  Google Scholar 

  23. Keskar, K.S., Yamashita, T., Onodera, Y.: Superconducting transition temperatures of r. F. sputtered nbn films. Jpn. J. Appl. Phys. 10, 370–374 (1971)

    Article  ADS  Google Scholar 

  24. Wolf, S.A., Singer, I.L., Cukauskas, E.J., Francavilla, T.L., Skelton, E.F.: Effects of deposition parameters on the properties of superconducting rf reactively sputtered NbN films. J. Vac. Sci. Technol. 17, 411–414 (2002)

    Article  Google Scholar 

  25. Treece, R.E., Horwitz, J.S., Claassen, J.H., Chrisey, D.B.: Pulsed laser deposition of high-quality NbN thin films. Appl. Phys. Lett. 65, 2860–2862 (2002)

    Article  ADS  Google Scholar 

  26. Suzuki, M., Baba, M., Anayama, T.: Critical magnetic fields of superconducting NbN films prepared by reactive sputtering. Jpn. J. Appl. Phys. 26, 947–948 (1987)

    Article  Google Scholar 

  27. Yamashita, T., Kitahara, S., Onodera, Y., Goto, Y., Aso, T.: Upper critical field of superconducting NbN films. J. Appl. Phys. 43, 4749–4751 (1972)

    Article  ADS  Google Scholar 

  28. Varmazis, C., Strongin, M.: Inductive transition of niobium and tantalum in the 10-MHx range. I. Zero-field superconducting penetration depth. Phys. Rev. B. 10, 1885–1896 (1974)

    Article  ADS  Google Scholar 

  29. Hinrichs, C.H., Swenson, C.A.: Superconducting critical field of tantalum as a function of temperature and pressure. Phys. Rev. 123, 1106–1114 (1961)

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by UT Dallas research enhancement fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyan Shi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Shi, X. Fabrication and Characterization of Superconducting Films for Superconductor-Topological Insulator Hybrid Devices. J Supercond Nov Magn 33, 217–221 (2020). https://doi.org/10.1007/s10948-019-05283-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-05283-6

Keywords

Navigation