Skip to main content
Log in

Magnetic Properties of Polycrystalline Compounds Cu0.64Mn0.86[Fe(CN)6]·7.2H2O and Cu0.84Mn0.66[Fe(CN)6]·7.1H2O

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this work, polycrystalline powder samples of Cu0.64Mn0.86[Fe(CN)6]·7.2H2O and Cu0.84Mn0.66[Fe(CN)6]·7.1 H2O have been synthesized by a coprecipitation method. The lattice parameter a is 10.053(8) Å and 10.083 Å for Cu0.64Mn0.86[Fe(CN)6]·7.2H2O and Cu0.84Mn0.66[Fe(CN)6]·7.1H2O, respectively. When the temperature reaches to 5 K, the magnetization is 7.262 emu/g and 0.142 emu/g for Cu0.64Mn0.86[Fe(CN)6]·7.2H2O and Cu0.84Mn0.66[Fe(CN)6]·7.1H2O, respectively. The coercive field and the remanent magnetization of Cu0.64Mn0.86[Fe(CN)6]·7.2H2O are 1204 Oe and 0.382 μB/fu, respectively. The coercive field and the remanent magnetization of Cu0.84Mn0.66[Fe(CN)6]·7.1H2O are 833 Oe and 0.681 μB/fu, respectively. In the initial magnetization curve, under the external magnetic field of 7 T, the magnetization of Cu0.64Mn0.86[Fe(CN)6]·7.2H2O and Cu0.84Mn0.66[Fe(CN)6]·7.1H2O is 2.13 μB/fu and 2.44 μB/fu, respectively. The difference between the calculated magnetic moment and the theoretical magnetic moment is quite large, which may be due to spin frustration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sato, O., Iyoda, T., Fujishima, A., Hashimoto, K.: Photoinduced magnetization of a cobalt-iron cyanide. Science. 272, 704–705 (1996)

    Article  ADS  Google Scholar 

  2. Bordage, A., Moulin, R., Fonda, E., Fornasieri, G., Rivière, E., Bleuzen, A.: Evidence of the core−shell structure of (photo)magnetic CoFe Prussian blue analogue nanoparticles and peculiar behavior of the surface secies. J. Am. Chem. Soc. 140, 10332–110342 (2015)

    Article  Google Scholar 

  3. Adamson, J., Lucas, T.C., Cairns, A.B., Funnell, N.P., Tucker, M.G., Kleppe, A.K., Hriljac, J.A., Goodwin, A.L.: Competing hydrostatic compression mechanisms in nickel cyanide. Physica B. 479, 35–40 (2015)

    Article  ADS  Google Scholar 

  4. Liu, M., Xu, M.: A coexistence of ferromagnetic and antiferromagnetic exchange interactions in Prussian blue analogue Cu0.47Ni0.48Mn0.55[Fe(CN)6]·XH2O. Inorg. Chem. Comm. 26(24–26), 24 (2012)

    Article  Google Scholar 

  5. Phillips, A.E., Halder, G.L., Chapman, K.W., Goodwin, A.L., Kepert, C.J.: Zero thermal expansion in a flexible, stable framework: tetramethylammonium copper(I) zinc(II) cyanide. J. Am. Chem. Soc. 132, 10–11 (2009)

    Article  Google Scholar 

  6. Adak, S., Daemen, L.L., Hartl, M., Williams, D., Summerhill, J., Nakotte, H.: Thermal expansion in 3d-metal Prussian blue analogs—a survey study. J. Solid State Chem. 184, 2854–2861 (2011)

    Article  ADS  Google Scholar 

  7. Keskin, M., Ertas, M.: Dynamic magnetic hysteresis behaviors in a mixed spin(3/2, 2) bilayer system with different crystal-field interactions. J. Supercond. Nov. Magn. 30, 3439–3449 (2017)

    Article  Google Scholar 

  8. Muthusamy, S., Charles, J., Renganathan, B., Sastikumar, D.: In situ growth of Prussian blue nanocubes on polypyrrole nanoparticles: facile synthesis, characterization and their application as fiber optic gas sensor. J. Mater. Sci. 53, 15401–15417 (2018)

    Article  ADS  Google Scholar 

  9. Joseyphus, A.: Prussian blue modified Fe3O4 nanoparticles for Cs detoxification. J. Mater. Sci. 49, 7014–7022 (2014)

    Article  ADS  Google Scholar 

  10. Wang, J., Zhuang, S., Liu, Y.: Metal hexacyanoferrates-based adsorbents for cesium removal. Coord. Chem. Rev. 374, 430–438 (2018)

    Article  Google Scholar 

  11. Tokoro, H., Ohkoshi, S., Matsuda, T., Hozumi, T., Hashimoto, K.: Magnetic specific heat of the low-temperature phase of rubidium manganese hexacyanoferrate. Chem. Phys. Lett. 388, 379–383 (2006)

    Article  ADS  Google Scholar 

  12. Vertelman, E.J.M., Maccallini, E., Gournis, D., Petra Rudolf, P., Bakas, T., Luzon, J., Broer, R., Pugzlys, A., Lummen, T.T.A., Loosdrecht, P.H.M., Koningsbruggen, P.J.: The influence of defects on the electron-transfer and magnetic properties of RbxMn[Fe(CN)6]y·ZH2O. Chem. Mater. 18(1953–1961), 1951 (2006)

    Article  Google Scholar 

  13. Ohkoshi, S., Hashimoto, K.: Design of a novel magnet exhibiting photoinduced magnetic pole inversion based on molecular field theory. J. Am. Chem. Soc. 121, 10591–10597 (1999)

    Article  Google Scholar 

  14. Yusuf, S.M., Kumar, A., Yakhmi, J.V.: Temperature- and magnetic-field-controlled magnetic pole reversal in a molecular magnetic compound. Appl. Phys. Lett. 95, 1825061–1825063 (2009)

    Article  Google Scholar 

  15. Xia Y., Liu M., Li D. Hydrostatic pressure induced transformation of magnetism in a trimetallic CuMnFe Prussian blue analogue, J. Coord. Chem. 72, 491–491 (2019)

    Article  MathSciNet  Google Scholar 

  16. Lartigue, L., Oh, S., Prouzet, E., Guari, Y., Larionova, J.: Superspin-glass behavior of Co3[Fe(CN)6]2 Prussian blue nanoparticles confined in mesoporous silica. Mater. Chem. Phys. 132, 438–445 (2012)

    Article  Google Scholar 

  17. Samain, L., Gilbert, B., Grandjean, F., Long, G.L., Strivay, D.: Redox reactions in Prussian blue containing paint layers as a result of light exposure. J. Anal. At. Spectrom. 28, 524–535 (2013)

    Article  Google Scholar 

  18. Ohkoshi, S., Hashimoto, K.: Theoretical treatment of the mixed ferro-ferrimagnets composed of ternary-metal Prussian blue analogs in a paramagnetic. Phys. Rev. B. 60, 12820 (1999)

    Article  ADS  Google Scholar 

  19. Ohkoshi, S., Iyoda, T., Fujishima, A., Hashimoto, K.: Magnetic properties of mixed ferro-ferrimagnets composed of Prussian blue analogs. Phys. Rev. B. 56, 11642–11652 (1997)

    Article  ADS  Google Scholar 

  20. Konarev, D.V., Khasanov, S.S., Kuzmin, A.V., Otsuka, A., Yamochi, H., Saito, G., Lyubovskaya, R.N.: Effective magnetic coupling with strong spin frustration in (Ph3MeP+)(C60·-) and reversible C60·- dimerization in (Ph3MeP+)(C60·-)·C6H5CN. Effect of solvent on structure and properties. New J. Chem. 40, 2792–2798 (2016)

    Article  Google Scholar 

  21. Liu, M., Xu, M.: Temperature dependent Jahn-Teller distortion in prussian blue analogue Cu0.47Ni0.48Mn0.55[Fe(CN)6]·7.8H2O. Z. Anorg. Allg. Chem. 639, 468–470 (2013)

    Article  Google Scholar 

Download references

Funding

This work was partially supported by National Natural Science Foundation of China (Grant No. 11447231), the National Undergraduate Innovation and Entrepreneurship Training Program Support Projects of China (Grant No. 201810555007), Research Foundation of Education Bureau of Hunan Province, China (Grant No. 14B151), and the Opening Project of Cooperative Innovation Center for Nuclear Fuel Cycle Technology and Equipment, University of South China (Grant No. 2019KFY10).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Liu or Duxin Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Y., Zhang, G., Liu, M. et al. Magnetic Properties of Polycrystalline Compounds Cu0.64Mn0.86[Fe(CN)6]·7.2H2O and Cu0.84Mn0.66[Fe(CN)6]·7.1H2O. J Supercond Nov Magn 32, 3831–3835 (2019). https://doi.org/10.1007/s10948-019-05166-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-05166-w

Keywords

Navigation