Skip to main content
Log in

Synthesis, Structural, Optical and Magnetic Properties of Pure NiO and NiO@SiO 2 Core–Shell Nanospheres

  • Review Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The preparation and characterisation of core–shell magnetic nanostructure with nickel oxide (NiO) core and silica (SiO2) as shell has been reported. Nanoparticles of bare NiO were produced by co-precipitation technique, and silica was coated on NiO using the standard Stober’s protocol. Structural and metal oxide vibrations analysed with X-ray diffractometer (XRD) and Fourier transform infrared spectra (FTIR) confirm the formation of core–shell nanostructures. Spherical morphology of the samples was initially observed in SEM, and core–shell nature was further confirmed by high-resolution transmission electron microscopy (HRTEM) analysis. Ultraviolet (UV)–visible spectroscopic studies reveal a strong interaction between core and shell materials which leads to a significant alteration in the optical absorption. A distinct bluish green emission observed in the photoluminescence (PL) studies confirms the presence of oxygen vacancies. Coating of SiO2 on NiO was found to amend the magnetic behaviour of core–shell system, and this change in magnetic ordering was explained on the basis of typical interfacial effects between the core–shell structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Salgueirino Maceira, V., Correa Duarte, M.A.: Adv. Mater. 19, 4131–4144 (2007)

    Article  Google Scholar 

  2. Alayoglu, S., Eichhorn, B.: J. Am. Chem. Soc. 130, 17479–17486 (2008)

    Article  Google Scholar 

  3. Alayoglu, S., Nilekar, A.U., Mavrikakis, M., Eichhorn, B.: Nat. Mater. 7, 333–338 (2008)

    Article  ADS  Google Scholar 

  4. Gao, T., Liand, Q.H., Wang, T.H.: Chem. Mater. 17, 887–892 (2005)

    Article  Google Scholar 

  5. Tak, Y., Hong, S.J., Leeand, J.S., Yong, K.: J. Mater. Chem. 19, 5945–5951 (2009)

    Article  Google Scholar 

  6. Ghosh Chaudhuri, R., Paria, S.: Chem. Rev. 112, 2373–2433 (2012)

    Article  Google Scholar 

  7. Berry, C.C., Curtis, A.S.: J. Phys. D: Appl. Phys. 36, R198–206 (2003)

    Article  ADS  Google Scholar 

  8. Salgueirino Maceira, V., Correa Duarte, M.A.: Adv. Mater. 19, 4131–4144 (2007)

    Article  Google Scholar 

  9. Salgueirino Maceira, V., Caruso, F., Liz Marzan, L.M.: J. Phys. Chem. B 107, 10990–10994 (2003)

    Article  Google Scholar 

  10. Bourgeat Lami, E.: J. Nanosci. Nanotechnol. 2, 1–24 (2002)

    Article  Google Scholar 

  11. Chen, M., Kim, Y.N., Lee, H.M., Li, C., Cho, S.O.: J. Phys. Chem. 112, 8870–8874 (2008)

    Google Scholar 

  12. Ghosh Chaudhuri, R., Paria, S.: Chem. Rev. 112, 2373–2433 (2012)

    Article  Google Scholar 

  13. Hardikar, V., Matijevic, E.: J. Colloid Interface Sci. 221, 133–136 (2000)

    Article  Google Scholar 

  14. Tejada, J., Zhang, X.X., del Barco, E., Henandez, J.M., Chudnovsky, M.: Phys. Rev. Lett. 79, 1754–1757 (1997)

    Article  ADS  Google Scholar 

  15. Ibrahim, M.M., Darwish, S., Seehra, M.: Phys. Rev. B 51, 2955–2959 (1995)

    Article  ADS  Google Scholar 

  16. Gider, S., Awschalom, D., Douglas, T., Mann, S., Chaparala, M.: Science 268, 77–80 (1995)

    Article  ADS  Google Scholar 

  17. Mulder, C.A., Van Duyneveldt, A.J., Mydosh, J.A.: Phys. Rev. B 23, 1384–1396 (1981)

  18. Kodama, R.H., Makhlouf, S.A., Berkowitz, A.E.: Phys. Rev. Lett. 79, 1393–1396 (1997)

    Article  ADS  Google Scholar 

  19. Hillebrecht, F.U., Ohldag, H., Weber, N.B., Bethke, C., Mick, U., Weiss, M., Bahrdt, J.: Phys. Rev. Lett. 86, 3419–3422 (2001)

    Article  ADS  Google Scholar 

  20. Lee, G.H., Huh, S.H., Jeong, J.W., Choi, B.J., Kim, S.H., Ri, H.C.: J. Am. Chem. Soc. 124, 12094–12095 (2002)

    Article  Google Scholar 

  21. Hotovy, I., Huran, J., Sicilano, P., Capone, S.: J. Sensors and Actuators B. 103, 300–311 (2004)

    Article  Google Scholar 

  22. Wang, X., Li, L., Zhang, Y.: Cryst. Growth. Des. 6, 2163–2165 (2006)

    Article  Google Scholar 

  23. Nathan, T., Aziz, A., Noor, A.F., Prabaharan, S.R.S.: J. Solid State Electrochem. 12, 1003–1009 (2008)

    Article  Google Scholar 

  24. Wu, M., Gao, J., Zhang, S., Chen, A.: J. Power Sources 159, 365–369 (2006)

    Article  ADS  Google Scholar 

  25. Wang, X., Song, J., Gao, L., Jin, J., Zheng, H., Zhang, Z.: Nanotechnology 16, 37–39 (2005)

    Article  ADS  Google Scholar 

  26. Sasi, B., Gopchandran, K.G., Manoj, P.K., Koshy, P., Rao, P.P., Vaidyan, V.K.: Vacuum 68, 149–154 (2002)

    Article  Google Scholar 

  27. Krishnakumar, S.R., Liberati, M., Grazioli, C.: J. Magn. Magn. Mater. 310, 8–12 (2007)

    Article  ADS  Google Scholar 

  28. Meyer, M., Albrecht Gary, A.M., Dietrich Buchecker, C.O., Sauvage, J.P.: J. Am. Chem. Soc 119, 4599–4607 (1997)

    Article  Google Scholar 

  29. Li, G., Shi, D.H., Zhu, H.L., Yan, H., Ng, S.W.: Inorg. Chim. Acta. 360, 2881–2889 (2007)

    Article  Google Scholar 

  30. Johns, C.A., Hossain, G.M.G., Malik, K.M.A., Haider, S., Rowzatur Romman, U.K.: Polyhedron 20, 721–726 (2001)

    Article  Google Scholar 

  31. Zheng, M., Zhao, T., Xu, W., Li, F., Yang, Y.: J. Sol-Gel Sci. Techn. 39, 151–157 (2006)

    Article  Google Scholar 

  32. Yu, Q., Ma, X., Wang, M., Yu, C., Bai, T.: Appl. Surf. Sci. 254, 5089–5094 (2008)

    Article  ADS  Google Scholar 

  33. Chakrabarty, S., Chatterjee, K.: Int. Scholarly Res. Netw. 719027, 1–6 (2011)

    Google Scholar 

  34. Vaidya, S., Ramanujachary, K.V., Lofland, S.E., Ganguli, K.G.: Cryst. Growth Des. 9, 1666–1670 (2009)

    Article  Google Scholar 

  35. Naveen, A.N., Selladurai, S.: International Journal of Innovative Research in Science & Engineering. ISSN (Online) 2347–3207

  36. Teng, Z., Su, X., Chen, G., Tian, C., Li, H., Ai, L., Lu, G.: Colloids. Surf. A 402, 60–65 (2012)

    Article  Google Scholar 

  37. Meher, S.K., Justin, P., Ranga Rao, G.: Appl. Mater. Interfaces 3, 2063–2073 (2011)

    Article  Google Scholar 

  38. Cullity, B.: Elements of X-ray Diffraction, 2nd. Adisson-Wesley Publishing, USA (1978)

    MATH  Google Scholar 

  39. Ganachari, S.V., Bhat, R., Deshpande, R., Venkataraman, A.: Recent Res. Sci. Technol. 4, 50–53 (2012)

    Google Scholar 

  40. Selvi, N., Sankar, S., Dinakaran, K.: J. Mater. Sci.-Mater. Electron. 24, 4873–4880 (2013)

    Article  Google Scholar 

  41. Jeevanandam, P., Koltypin, Y., Gedanken, A.: NanoLett 1, 263–266 (2001)

    Article  ADS  Google Scholar 

  42. Casu, M., Lai, A., Musinu, A., Piccaluga, G., Solinas, S., Bruni S, S.: J. Mater. Sci. 36, 3731–3735 (2001)

    Article  ADS  Google Scholar 

  43. Cao, G.: Nanostructures and nanomaterials, pp 47–75. Imperial College Press, London (2004)

    Book  Google Scholar 

  44. Sinha, A.K., Gupta, R.K., Deb, S.K.: Appl. Phys. A 108, 607–613 (2012)

    Article  ADS  Google Scholar 

  45. Liu, Y., Koep, E., Liu, M.: Chem. Mater. 17, 3997–4000 (2005)

    Article  Google Scholar 

  46. Hufner, S.: Adv. Phys. 49, 183–356 (1994)

    Article  ADS  Google Scholar 

  47. Patil, P.S., Kadam, L.D.: Appl. Surf. Sci. 199, 211–221 (2002)

    Article  ADS  Google Scholar 

  48. Irwin, M.D., Buchholz, D.B., Hains, A.W., Chang, R.P.H., Marks, T.J.: Proc. Natl. Acad. Sci. USA 105, 2783–2787 (2007)

    Article  ADS  Google Scholar 

  49. Wang, T., Liu, Y., Xu, Y., He, G., Li, G., Lv, J., Wu, M., Sun, Z., Fang, Q., Ma, Y., Li, J.: J. Mater. Chem. 21, 18810–18816 (2011)

    Article  Google Scholar 

  50. Rao, T.P., Kumar, M.C.S.: J. Crystallization Process Technol. 2, 72–79 (2012)

    Article  Google Scholar 

  51. Wang, Y., Ma, C., Sun, X., Li, H.: Microporous Mesoporous Mater. 71, 99–10 (2004)

    Article  Google Scholar 

  52. Adler, D., Feinleib, J.: Phys. Rev. B 2, 3112–3134 (1970)

    Article  ADS  Google Scholar 

  53. Abbas, S., Ubaid, A.: J. Advan. Phys. 6, 1016–1023 (2014)

    Google Scholar 

  54. Kundu, T.K., Karak, N., Barik, P., S. Saha: 1, 2231–2307 (2011)

  55. Vogt, C., Muhammet, S., Topra, K., Muhammed, M., Laurent, S., Bridot, J.L., Muller, R.N.: J. Nanopart. Res. 12, 1137–1147 (2010)

    Article  ADS  Google Scholar 

  56. Sundaresan, A., Rao, C.N.: Solid State Commun. 149, 1197–1200 (2009)

    Article  ADS  Google Scholar 

  57. Wang, D., Gong, M.: vol. 109 (2011)

Download references

Acknowledgments

The authors acknowledge the Department of Science and Technology, Government of India for providing financial support for Mrs. S. Sumithra under the Women Scientist Scheme (WOS-A) (ref SR/WOS-A/PM-1006/2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sumithra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sumithra, S., Jaya, N.V. Synthesis, Structural, Optical and Magnetic Properties of Pure NiO and NiO@SiO 2 Core–Shell Nanospheres. J Supercond Nov Magn 30, 1129–1136 (2017). https://doi.org/10.1007/s10948-017-4025-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4025-5

Keywords

Navigation