Skip to main content
Log in

Bound Clusters and Pseudogap Transitions in Layered High-Tc Superconductors

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We show that negatively charged dopant ions in hole-doped, layered, high-Tc superconductors induce at low doping bound clusters of four holes in CuO layers. This phenomenon requires double degeneracy of the hole band provided by the anti-Jahn-Teller effect, where dopant ions push apical oxygen ions into their symmetry positions and release holes from Copper atoms. Experimentally, that is seen as nanoscale inhomogeneity in the pseudogap region. The broad pseudogap transition contains two separate transitions. We connect the higher temperature transition to unbinding of clustered holes out of the spin-singlet state in the CuO plane. The lower temperature transition removes directional stripy order of these dipolar clusters, and the bosonic, spin-zero band disappears. We report results on energetics of the cluster formation and fit the density parameter r s and dielectric constant to Hall measurements. Our model leads to the quantum critical point at doping 0.2 where bound clusters disappear at zero temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mallet, P., Roditchev, D., Sacks, W., Défourneau, D., Klein, J.: Phys. Rev. B 54, 13324–13329 (1996)

    Article  ADS  Google Scholar 

  2. Cren, T., Roditchev, D., Sacks, W., Klein, J.: Europhys. Lett. 54, 84 (2001)

    Article  ADS  Google Scholar 

  3. McElroy, K., Lee, J., Slezak, J.A., Lee, D.-H., Eisaki, H., Uchida, S., Davis, J.C.: Science 309, 1048 (2005)

    Article  ADS  Google Scholar 

  4. Fratini, M., Poccia, N., Ricci, A., Campi, G., Burghammer, M., Aeppli, G., Bianconi, A.: Nature 466, 841 (2010)

    Article  ADS  Google Scholar 

  5. Poccia, N., Fratini, M., Ricci, A., Campi, G., Luisa, B., Vittorini-Orgeas, A., Bianconi, G., Aeppli, G., Bianconi, A.: Nat. Mater. 10, 733 (2011)

    Article  ADS  Google Scholar 

  6. Zeljkovic, I., Xu, Z., Wen, J., Gu, G., Markiewicz, R.S., Hoffman, J.E.: Science 337(6092), 320–323 (2012)

    Article  ADS  Google Scholar 

  7. Hashimoto, M., Vishik, I.M., He, R.-H., Devereaux, T.P., Shen, Z.-X.: Nat. Phys. 10, 483–495 (2014)

    Article  Google Scholar 

  8. He, R.-H., Hashimoto, M., Karapetyan, H., Koralek, J.D., Hinton, J.P., Testaud, J.P., Nathan, V., Yoshida, Y., Yao, H., Tanaka, K., Meevasana, W., Moore, R.G., Lu, D.H., Mo, S.-K., Ishikado, M., Eisaki, H., Hussain, Z., Devereaux, T.P., Kivelson, S.A., Orenstein, J., Kapitulnik, A., Shen, Z.-X.: Science 331(6024), 1579–1583 (2011)

    Article  ADS  Google Scholar 

  9. Hashimoto, M., He, R.-H., Tanaka, K., Testaud, J.-P., Meevasana, W., Moore, R.G., Lu, D., Yao, H., Yoshida, Y., Eisaki, H., Devereaux, T.P., Hussain, Z., Shen, Z.-X.: Nat. Phys. 6, 414–418 (2010)

    Article  Google Scholar 

  10. Kondo, T., Hamaya, Y., Palczewski, A.D., Takeuchi, T., Wen, J.S., Xu, Z.J., Gu, G., Schmalian, J., Kaminski, A.: Nat. Phys. 7, 21–25 (2011)

    Article  Google Scholar 

  11. Fujita, K., Kim, C.K., Lee, I., Lee, J., Hamidian, M.H., Firmo, I.A., Mukhopadhyay, S., Eisaki, H., Uchida, S., Lawler, M.J., Kim, E.-A., Davis, J.C.: Science 344(6184), 612–616 (2014)

    Article  ADS  Google Scholar 

  12. Comin, R., Frano, A., Yee, M.M., Yoshida, Y., Eisaki, H., Schierle, E., Weschke, E., Sutarto, R., He, F., Soumyanarayanan, A., He, Y., Le Tacon, M., Elfimov, I.S., Hoffman, J.E., Sawatzky, G.A., Keimer, B., Damascelli, A.: Science 343(6169), 390–392 (2014)

    Article  ADS  Google Scholar 

  13. da Silva Neto, E.H., Aynajian, P., Frano, A., Comin, R., Schierle, E., Weschke, E., Gyenis, A., Wen, J., Schneeloch, J., Xu, Z., Ono, S., Gu, G., Le Tacon, M., Yazdani, A.: Science 343(6169), 393–396 (2014)

    Article  ADS  Google Scholar 

  14. Gor’kov, L.P., Teitel’baum, G.B.: Phys. Rev. Lett. 97, 247003 (2006)

    Article  ADS  Google Scholar 

  15. Ono, S., Komiya, S., Ando, Y.: Phys. Rev. B 75, 024515 (2007)

    Article  ADS  Google Scholar 

  16. Bednorz, G., Muller, A.: Nobel lecture (1987)

  17. Feenberg, E.: Theory of Quantum Fluids. Academic, New York (1969)

    Google Scholar 

  18. Kusmartsev, F.V., Saarela, M.: Supercond. Sci. Technol. 22, 014008 (2009)

    Article  ADS  Google Scholar 

  19. Nishikawa, T., Takeda, J., Sato, M.: J. Phys. Soc. Jpn. 63(4), 1441–1448 (1994)

    Article  ADS  Google Scholar 

  20. Chen, C.Y., et al.: Phys. Rev. B 43, 392 (1991)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank Antonio Bianconi,Nicola Poccia and Christos Panagopoulos for useful discussions and NanoSc-Cost Action MP1201 for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Saarela.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saarela, M., Kusmartsev, F.V. Bound Clusters and Pseudogap Transitions in Layered High-Tc Superconductors. J Supercond Nov Magn 28, 1337–1341 (2015). https://doi.org/10.1007/s10948-014-2915-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-014-2915-3

Keywords

Navigation