Skip to main content
Log in

Investigation of the Upper Critical Magnetic Field and Activation Energy in MgB2 Thin Film

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

MgB2 film with a thickness of about 600 nm was deposited on the MgO (100) single crystal substrate using a “two-step” synthesis technique. First, deposition of boron thin film was carried out by rf magnetron sputtering on MgO substrates and followed by a post deposition annealing at 850 °C in magnesium vapor. The upper critical field H c2 has been estimated from temperature dependences of resistivity curves in both directions of the magnetic fields perpendicular and parallel to the c-axis. Resistivity measurements of the film were performed using a standard four-probe method under different magnetic fields up to 70 kOe in zero fields cooling regime. The upper critical magnetic field H c2(0) at T=0 K for 90 % of R n was calculated by the extrapolation H c2(T) to the temperature T=0 K. The results showed that H c2ab(0) and H c2c(0) was found to be around 22 T and 18 T, respectively. Using extracted data, the zero-temperature coherence lengths and field anisotropy ratio were calculated. In order to determine the activation energy of thermally activated flux flow of the film, Arrhenius law was taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nagamatsu, J., Nakagawa, N., Muranaka, T., Zentiani, Y., Akimitsu, J.: Nature 410, 63–64 (2001)

    Article  ADS  Google Scholar 

  2. Braccini, V., Gurevich, A., Giencke, J.E., Jewell, M.C., Eom, C.B., Larbalestier, D.C., Pogrebnyakov, A., Cui, Y., Liu, B.T., Hu, Y.F., Redwing, J.M., Li, Q., Xi, X.X., Singh, R.K., Gandikota, R., Kim, J., Wilkens, B., Newman, N., Rowell, J., Moeckly, B., Ferrando, V., Tarantini, C., Marré, D., Putti, M., Ferdeghini, C., Vaglio, R., Haanappel, E.: Phys. Rev. B 71, 012504 (2005)

    Article  ADS  Google Scholar 

  3. Jung, M.H., Jaime, M., Lacerda, A.H., Boebinger, G.S., Kang, W.N., Kim, H.J., Choi, E.M., Lee, S.I.: Chem. Phys. Lett. 343, 447–451 (2001)

    Article  ADS  Google Scholar 

  4. Kang, W.N., Kim, H.-J., Choi, E.-M., Jung, C.U., Lee, S.-I.: Science 292(5521), 1521–1523 (2001)

    Article  ADS  Google Scholar 

  5. Kim, H.J., Kang, W.N., Choi, E.-M., Kim, M.-S., Kim, K.H.P., Lee, S.-I.: Phys. Rev. Lett. 87(8), 087002 (2001)

    Article  ADS  Google Scholar 

  6. Ilonca, G., Yang, T.R., Pop, A.V., Toma, V., Balint, P., Bodea, M., Marconi, D., Jurcut, T.: Physica C 460–462, 557–559 (2007)

    Article  Google Scholar 

  7. Buzea, C., Yamashita, T.: Supercond. Sci. Technol. 14, R115–R146 (2001)

    Article  ADS  Google Scholar 

  8. Eltsev, Y., Lee, S., Nakao, K., Chikumoto, N., Tajima, S., Koshizuka, N., Murakami, M.: Physical Review B 65, 140501(R) (2002)

    Article  ADS  Google Scholar 

  9. Ilonca, G., Beiuşeanu, F., Toma, V., Jurcut, T., Macocian, E.-V.: J. Optoelectron. Adv. Mater. 8(3), 1152–1155 (2006)

    Google Scholar 

  10. Sidorenko, A., Zdravkov, V., Ryazanov, V., Horn, S., Klimm, S., Tidecks, R., Wixforth, A., Koch, Th., Schimmel, Th.: Philos. Mag. A 85(16), 1783–1790 (2005)

    Article  ADS  Google Scholar 

  11. Zhao, Y., Dou, S.X., Ionescu, M., Munroe, P.: Appl. Phys. Lett. 88, 012502 (2006)

    Article  ADS  Google Scholar 

  12. Taylan Koparan, E., Surdu, A., Sidorenko, A., Yanmaz, E.: Physica C 473, 1–5 (2012)

    Article  ADS  Google Scholar 

  13. Vajpayee, A., Awana, V.P.S., Bhalla, G.L., Kishan, H.: Nanotechnology 19, 125708 (2008)

    Article  ADS  Google Scholar 

  14. Mudgel, M., Chandra, L.S.S., Ganesan, V., Bhalla, G.L., Kishan, H., Awana, V.P.S.: J. Appl. Phys. 106, 033904 (2009)

    Article  ADS  Google Scholar 

  15. Vajpayee, A., Jha, R., Srivastava, A.K., Kishan, H., Tropeano, M., Ferdeghini, C., Awana, V.P.S.: Supercond. Sci. Technol. 24, 045013 (2011)

    Article  ADS  Google Scholar 

  16. Ferrando, V., Amoruso, S., Bellingeri, E., Bruzzese, R., Manfrinetti, P., Marrè, D., Velotta, R., Wang, X., Ferdeghini, C.: Supercond. Sci. Technol. 16, 241–245 (2003)

    Article  ADS  Google Scholar 

  17. Patnaik, S., Cooley, L.D., Gurevich, A., Polyanskii, A.A., Jiang, J., Cai, X.Y., Squitieri, A.A., Naus, M.T., Lee, M.K., Choi, J.H., Belenky, L., Bu, S.D., Letteri, J., Song, X., Schlom, D.G., Babcock, S.E., Eom, C.B., Hellstrom, E.E., Larbalestier, D.C.: Supercond. Sci. Technol. 14, 315 (2001)

    Article  ADS  Google Scholar 

  18. Ansari, I.A., Shahabuddin, M., Alzayed, N.S., Vajpayee, A., Awana, V.P.S., Kishan, H.: Physica C 470, 369–372 (2010)

    Article  ADS  Google Scholar 

  19. Shi, Z.X., Zhang, Y.X., Lv, H., Xu, M., Choi, E.-M., Lee, S.-I.: Physica C 467, 101–105 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

All the authors would like to thank Professor M. Altunbaş (at Karadeniz Technical University, Trabzon, Turkey) for his assistance in terms of editing English language and grammar. This work was supported by the Council of Higher Education (Turkey) and Scientific Research Coordination Unit of Karadeniz Technical University (contract number: 2010.111.001.2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Taylan Koparan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylan Koparan, E., Surdu, A., Sidorenko, A. et al. Investigation of the Upper Critical Magnetic Field and Activation Energy in MgB2 Thin Film. J Supercond Nov Magn 25, 2235–2238 (2012). https://doi.org/10.1007/s10948-012-1605-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-012-1605-2

Keywords

Navigation