Skip to main content
Log in

Non-linear Localized Lattice Mode Coupling Mechanism and the Pseudogap in High-temperature Superconducting Cuprates

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The pseudo-gap phenomena in high-temperature cuprate superconductors is an outstanding puzzle with no consensus yet on its physical origin. A previous suggestion on the role of non-linear local lattice instability modes on the microscopic pairing mechanism in high temperature cuprate superconductors is re-examined to investigate whether unusual lattice mechanisms could cause a pseudo-gap. By assuming an electron predominantly interacting with a non-linear Q 2 mode of the oxygen clusters in the CuO2 planes, we show that the interaction has explicit d-wave symmetry and leads to an indirect coupling of d-wave symmetry between electrons. We show that the polaron formation by the non-linear mode can cause a pseudo-gap of d-wave symmetry before the onset of coherence in the superconducting pairing. We suggest a simple phenomenological explanation of the pseudo-gap crossover temperature and the Fermi arcs. The discussion may be relevant for the pseudo-gap in non-superconducting giant magnetoresistive manganites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Norman, M.R., Pepin, C.: Rep. Prog. Phys. 66, 1547–1610 (2003)

    Article  ADS  Google Scholar 

  2. Lee, P.A.: Rep. Prog. Phys. 71, 012501 (2008)

    Article  ADS  Google Scholar 

  3. Newns, D.M., Tsuei, C.C.: Nature Phys. 3, 184–191 (2007)

    Article  ADS  Google Scholar 

  4. Hufner, S., et al.: Rep. Prog. Phys. 71, 062501 (2008)

    Article  ADS  Google Scholar 

  5. Bussman-Holder, A., Keller, H.: Eur. Phys. J. B 44, 487–490 (2005)

    Article  ADS  Google Scholar 

  6. Kulic, M.L.: Phys. Rep. 338, 1–264 (2000)

    Article  ADS  Google Scholar 

  7. Song, J., Annet, J.F.: Phys. Rev. B 51, 3840–3849 (1995)

    Article  ADS  Google Scholar 

  8. Mahan, G.D.: Phys. Rev. B 56, 8322–8329 (1997)

    Article  ADS  Google Scholar 

  9. Sievers, A.J., Takeno, S.: Phys. Rev. Lett. 61, 970–973 (1988)

    Article  ADS  Google Scholar 

  10. Burlakov, V.M., Kiselev, S.A., Pyrkov, V.N.: Phys. Rev. B 42, 4921–4927 (1990)

    Article  ADS  Google Scholar 

  11. Bickham, S.R., Kiselev, S.A., Sievers, A.J.: Phys. Rev. B 47, 14206–14211 (1993)

    Article  ADS  Google Scholar 

  12. Lee, B.S.: Physica C 160, 141–146 (1989)

    Article  ADS  Google Scholar 

  13. Lee, B.S.: Physica C 185–189, 1475–1476 (1991)

    Article  Google Scholar 

  14. Lee, B.S.: In: Proc. Fifth Asia-Pacific Physics Conference, vol. 2, pp. 964–972. World Scientific, Singapore (1994)

    Google Scholar 

  15. Bednorz, J.G., Muller, K.A.: Rev. Mod. Phys. 60, 585–600 (1988)

    Article  ADS  Google Scholar 

  16. Bates, C.A.: Phys. Rep. 35C, 187–304 (1978)

    Article  ADS  Google Scholar 

  17. Lee, B.S., Nasu, K.: Phys. Lett. A 167, 205–208 (1992)

    Article  ADS  Google Scholar 

  18. Teh, C.G.R., Lee, B.S., Koo, W.K.: In: Yang-Baxter Systems, Non-linear Models and Their Applications. World Scientific, Singapore (2000)

    Google Scholar 

  19. Pytte, E., Feder, J.: Phys. Rev. 187, 1077–1088 (1969)

    Article  ADS  Google Scholar 

  20. Micnas, R., Ranninger, J., Robaszkiewicz, S.: Rev. Mod. Phys. 62, 113–171 (1990)

    Article  ADS  Google Scholar 

  21. Alexandrov, A.S., Mott, N.F.: Polarons & Bipolarons. World Scientific, Singapore (1995)

    Google Scholar 

  22. Batlogg, B., Varma, C.M.: Physics World, 33–38 (February 2000)

  23. Zhao, G.M., Condor, K., Keller, H., Muller, K.A.: Nature 381, 676–678 (1996)

    Article  ADS  Google Scholar 

  24. Manella, N., et al.: Nature 438, 474–478 (2005)

    Article  ADS  Google Scholar 

  25. Kanigel, A., et al.: Nature Phys. 2, 447–451 (2006)

    Article  ADS  Google Scholar 

  26. Lanzara, A., et al.: Nature 412, 510–514 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, B.S. Non-linear Localized Lattice Mode Coupling Mechanism and the Pseudogap in High-temperature Superconducting Cuprates. J Supercond Nov Magn 23, 333–338 (2010). https://doi.org/10.1007/s10948-009-0536-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-009-0536-z

Keywords

Navigation