Skip to main content
Log in

The 2D Hubbard Model and the High T c Cuprate Problem

  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Numerical calculations are being used to explore both the properties of strongly-correlated electron systems and the interactions which give rise to these properties. Here, we review what has been learned about the two-dimensional (2D) Hubbard model and comment on its relationship to the high T c cuprate problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. A. Little, Phys. Rev. 134, A1416 (1964).

    Article  ADS  Google Scholar 

  2. V. L. Ginzburg, Phys. Lett. 13, 101 (1964).

    ADS  Google Scholar 

  3. V. L. Ginzburg, The Physics of a Lifetime (Springer, Berlin, 2000).

    Google Scholar 

  4. J. G. Bednorg and K. A. Müller, Z. Phys. B Conden. Matter 64, 189 (1986).

    Article  ADS  Google Scholar 

  5. P. W. Anderson, Phys. Rev. 115, 2 (1959).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. M. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963).

    Article  ADS  Google Scholar 

  7. J. Hubbard, Proc. R. Soc. Lond. 276, 238 (1963).

    Article  ADS  Google Scholar 

  8. P. W. Anderson, Science 235, 1196 (1987).

    Article  ADS  Google Scholar 

  9. N. Bulut, Adv. Phys. 51, 1587 (2002).

    Article  ADS  Google Scholar 

  10. R. M. Noack and S. R. Manmana, AIP Conf. Proc. 789, 93 (2005); cond-mat/0510321.

    ADS  Google Scholar 

  11. T. Maier, M. Jarrell, T. Pruschke, and M. Hettler, Rev. Modern Phys. 77, 1027 (2005).

    Article  ADS  Google Scholar 

  12. T. Paiva, R. T. Scalettar, C. Huscroft, and A. K. McMahan, Phys. Rev. B 63, 125116 (2001).

    Article  ADS  Google Scholar 

  13. S. R. White, D. J. Scalapino, R. L. Sugar, E. Y. Loh, J. E. Gubernatis, and R. T. Scalettar, Phys. Rev. B 40, 506 (1989).

    Article  ADS  Google Scholar 

  14. J. E. Hirsch, Phys. Rev. B 31, 4403 (1985).

    Article  ADS  Google Scholar 

  15. T. A. Maier, M. Jarrell, T. C. Schulthess, P. R. C. Kent, and J. B. White, Phys. Rev. Lett. 95, 237001 (2005).

    Article  ADS  Google Scholar 

  16. S. R. White, Phys. Rev. B 48, 10345 (1993).

    Article  ADS  Google Scholar 

  17. G. Hager, G. Wellein, E. Jeckelmann, and H. Fehske, Phys. Rev. B 71, 75108 (2005).

    Article  ADS  Google Scholar 

  18. S. R. White and D. J. Scalapino, Phys. Rev. Lett. 81, 3227 (1998).

    Article  ADS  Google Scholar 

  19. C. Huscroft, M. Jarrell, T. Maier, S. Moukouri, and A. N. Tahvildarzadeh, Phys. Rev. Lett. 86, 139 (2001); A. Macridin, M. Jarrell, T. Maier, P. R. C. Kent, and E. D’Azevedo, Phys. Rev. Lett. 97, 36401 (2006).

    Google Scholar 

  20. A.-M. S. Tremblay, B. Kyung, and D. Senechal, Low Temperature Physics 32, 424 (2006); cond-mat/0511334.

    Google Scholar 

  21. C. Dahnken, M. Potthoff, E. Arrigoni, and W. Hanke; cond-mat/0504618.

  22. N. Bulut, D. J. Scalapino, and S. R. White, Phys. Rev. B 47, R6157 (1993); 50, 9623 (1994).

    Article  ADS  Google Scholar 

  23. T. A. Maier, M. Jarrell, and D. J. Scalapino, Phys. Rev. Lett. 96, 47005 (2006).

    Article  ADS  Google Scholar 

  24. T. Maier, M. Jarrell, and D. J. Scalapino, Phys. Rev. B 74, 94513 (2006).

    Google Scholar 

  25. K. Miyake, S. Schmitt-Rink, and C.M. Varma, Phys. Rev. B 34 6554 (1986).

    Article  ADS  Google Scholar 

  26. D. J. Scalapino, E. Loh, Jr., and J. E. Hirsch, Phys. Rev. B 34, 8190 (1986).

    Article  ADS  Google Scholar 

  27. D. J. Scalapino, Phys. Can. 56, 267 (2000).

    Google Scholar 

  28. S. A. Kivelson and E. Fradkin, Chapter 15 in the Handbook of High Temperature Superconductivity, edited by J. R. Schrieffer and J. S. Brooks (Springer 2006); cond-mat/0507459.

  29. V. J. Emery and S. A. Kivelson, Phys. Rev. Lett. 74, 3253 (1995); E. Arrigoni, E. Fradkin, and S. A. Kivelson, Phys. Rev. B 69, 214519 (2004).

    Article  ADS  Google Scholar 

  30. G. Deutscher, Nature 397, 410 (1999).

    Article  ADS  Google Scholar 

  31. M. Le Tacon, et al., Nature Physics 2, 537 (2006); cond-mat/0603392.

  32. M. Hashimoto, et al.; cond-mat/0610758.

  33. T. H. Geballe and G. Koster, Chapter 8 in the Handbook of High Temperature Superconductivity, edited by J. R. Schrieffer and J. S. Brooks (Springer 2006); cond-mat/0604026.

  34. T. P. Devereaux, T. Cuk, Z.-X. Shen, and N. Nagaosa, Phys. Rev. Lett. 93, 117004 (2004).

    Article  ADS  Google Scholar 

  35. Jinho Lee, et al., Nature 442, 546 (2006).

  36. D. J. Scalapino, Chapter 13 in the Handbook of High Temperature Superconductivity, edited by J. R. Schrieffer and J. S. Brooks (Springer 2006); cond-mat/0610710.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. Scalapino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scalapino, D.J. The 2D Hubbard Model and the High T c Cuprate Problem. J Supercond 19, 195–200 (2006). https://doi.org/10.1007/s10948-006-0155-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-006-0155-x

Keywords

Navigation