Skip to main content
Log in

On the Tender X-Ray Flat-Field Spectrograph with a Concave VLS Grating

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We analyze the way of advancing to tender X-rays the short-wavelength bound of the operating range of flat-field grating spectrographs. We design two VLS grating spectrographs with flat fields covering a range of 2 – 13 Å, using spherical (R = 30 and 90 m) VLS gratings mounted at grazing angles of 1.5° and 0.5°. Numerical ray tracing suggests that the width of the spectral image of a point monochromatic source is well within 26 μm, which corresponds to the resolution limit of a CCD detector with a pixel size of 13 μm. For the 1.5° instrument, a sufficiently high reflectivity may be provided by a multilayer coating (e.g., Cr/C) with a period gradient aligned with the grating lines, which eliminates the overlap of different diffraction orders due to the wavelength dispersion of the optical constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. H. Underwood, “Miltilayers and Crystals,” in: X-Ray Data Booklet; xdb.lbl.gov

  2. K. D. Joensen, P. Gorenstein, J. L. Wood, et al., Proc. SPIE, 2279, 180 (1994).

    Article  ADS  Google Scholar 

  3. K. D. Joensen, P. Gorenstein, F. E. Christensen, et al., Proc. SPIE, 2253, 299 (1994).

    Article  ADS  Google Scholar 

  4. S. G. Preston, A. Sanpera, M. Zepf, et al., Phys. Rev. A, 53, R31(R) (1996).

    Article  ADS  Google Scholar 

  5. A. S. Pirozhkov, M. Kando, T. Zh. Esirkepov, et al., New J. Phys., 16, 093003 (2014).

    Article  ADS  Google Scholar 

  6. A. S. Pirozhkov, T. Zh. Esirkepov, T. A. Pikuz, et al., Sci. Rep., 7, 17968 (2017).

    Article  ADS  Google Scholar 

  7. S. Fourmaux, E. Hallin, U. Chaulagain, et al., Opt. Express, 28, 3147 (2020).

    Article  ADS  Google Scholar 

  8. S. Fourmaux, J. C. Kieffer, and E. Hallin, Proc. SPIE, 11036, 110360D (2019).

    Google Scholar 

  9. S. Fourmaux, E. Hallin, P. G. Arnison, and J. C. Kieffer, Appl. Phys. B, 125, 34 (2019).

    Article  ADS  Google Scholar 

  10. Y. Glinec, J. Faure, L. Le Dain, et al., Phys. Rev. Lett., 94, 025003 (2005).

    Article  ADS  Google Scholar 

  11. A. V. Brantov, M. G. Lobok, and V. Yu. Bychenkov, Quantum Electron., 47, 232 (2017).

    Article  ADS  Google Scholar 

  12. E. N. Ragozin, E. A. Vishnyakov, A. O. Kolesnikov, et al., Phys.-Usp., 64, 495 (2021).

    Article  ADS  Google Scholar 

  13. E. A. Vishnyakov, A. O. Kolesnikov, E. N. Ragozin, and A. N. Shatokhin, Quantum Electron., 46, 953 (2016).

    Article  ADS  Google Scholar 

  14. T. Harada and T. Kita, Appl. Opt., 19, 3987 (1980).

    Article  ADS  Google Scholar 

  15. T. Kita, T. Harada, N. Nakano, and H. Kuroda, Appl. Opt., 22, 512 (1983).

    Article  ADS  Google Scholar 

  16. J. Dvorak, I. Jarrige, V. Bisogni, et al., Rev. Sci. Instrum., 87, 115109 (2016).

    Article  ADS  Google Scholar 

  17. I. Jarrige, V. Bisogni, Y. Zhu, et al., Synchrotron Radiat. News, 31, 7 (2018).

    Article  Google Scholar 

  18. M. C. Hettrick and J. H. Underwood, AIP Conf. Proc., 147, 237 (1986).

    Google Scholar 

  19. F. Senf, F. Bijkerk, F. Eggenstein, et al., Opt. Express, 24, 13220 (2016).

    Article  ADS  Google Scholar 

  20. A. Sokolov, F. Eggenstein, F. Schäfers, et al., in: “Physics of X-Ray and Neutron Multilayer Structures Workshop, 2016” (PXRNMS Workshop, Enschede, Netherlands, November 10, 2016); www.utwente.nl/en/tnw/xuv/workshops/archive/pxrnm-workshop-2016/program/sokolov-high-efficiency-multilayer-coated-blazed-grating-for-tender-x-rays.pdf

  21. T. Imazono, R. Ukita, H. Nishihara, et al., Appl. Opt., 57, 7770 (2018).

    Article  ADS  Google Scholar 

  22. E. N. Ragozin, S. S. Andreev, F. Bijkerk, et al., Proc. SPIE, 3156, 331 (1997).

    Article  ADS  Google Scholar 

  23. The Center for X-Ray Optics, “Atomic scattering factor files,” LBNL henke.lbl.gov/optical_constants/ (2021).

  24. N. N. Kolachevskii, A. S. Pirozhkov, and E. N. Ragozin, Quantum Electron., 30, 428 (2000).

    Article  ADS  Google Scholar 

  25. A. S. Pirozhkov and E. N. Ragozin, Phys.-Usp., 58, 1095 (2015).

    Article  ADS  Google Scholar 

  26. A. O. Kolesnikov, E. A. Vishnyakov, E. N. Ragozin, and A. N. Shatokhin, Quantum Electron., 50, 967 (2020).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Kolesnikov.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolesnikov, A.O., Shatokhin, A.N., Vishnyakov, E.A. et al. On the Tender X-Ray Flat-Field Spectrograph with a Concave VLS Grating. J Russ Laser Res 43, 467–475 (2022). https://doi.org/10.1007/s10946-022-10071-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-022-10071-0

Keywords

Navigation