Skip to main content
Log in

Tomographic Representation of Electrocardiogram Signals

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We consider signals of an arbitrary nature in the tomographic representation and compare their tomographic representation and the fractional Fourier transform. Also we illustrate how to apply the tomograms and the identical Radon transform for processing medical electrocardiogram (ECG) signals. The first results obtained show that, in contrast to routine Fourier analysis, the Radon transform revealed additional information for patients with early signs of ischemic heart disease (IHD) compared to healthy persons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Schrödinger, An. Phys., 79, 361 (1926).

    Article  Google Scholar 

  2. E. Schrödinger, An. Phys., 81, 109 (1926).

    Article  Google Scholar 

  3. J. B. J. Fourier, Theorie Analitique de la Chaleur (Onevres de Fourier), G. Darbous (Ed.), Gauthier-Villarrs, Paris (1988), Tome premier.

  4. J. M. Combes and A. Grossmann, Wavelets, in: P. Tchamit-chian (Ed.), 2nd ed., Springer, Berlin (1990).

    Chapter  Google Scholar 

  5. L. Landau, Z. Phys., 45, 430 (1927).

    Article  ADS  Google Scholar 

  6. J. von Neuman, Göttingen Nachricten, 11, 245 (1927).

    Google Scholar 

  7. E. Wigner, Phys. Rev., 40, 749 (1932).

    Article  ADS  Google Scholar 

  8. K. Husimi, Proc. Phys. Math. Soc. Jpn., 22, 264 (1940).

    Google Scholar 

  9. Y. Kano, J. Math. Phys., 6, 1913 (1965).

    Article  ADS  Google Scholar 

  10. R. J. Glauber, Phys. Rev., 131, 2766 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  11. E. C. G. Sudarshan, Phys. Rev. Lett., 10, 277 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  12. J. Ville, Cables et Transmission, 2A, 62 (1948).

    Google Scholar 

  13. L. Cohen, J. Math. Phys., 7, 781 (1966).

    Article  ADS  Google Scholar 

  14. L. Cohen, Proc. IEEE, 77, 941 (1989).

    Article  ADS  Google Scholar 

  15. K.-B. Wolf, Integral Transforms in Science and Engineering, Plenum Press, New York (1979).

    Book  MATH  Google Scholar 

  16. J. Radon, Ber. Sachs. Akad. Wissenschaften, 29, 262 (1917).

    Google Scholar 

  17. S. Mancini, V. I. Man’ko, and P. Tombesi, Phys. Lett. A, 213, 1 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  18. A. Ibort, V. I. Man’ko, G. Marmo, et al., Phys. Scr., 84, 065066 (2011).

    Article  Google Scholar 

  19. M. A. Man’ko, V. I. Man’ko, and R. V. Mendes, J. Phys. A: Math. Gen., 34, 8321 (2001).

    Article  ADS  Google Scholar 

  20. C. Aguirre and R. V. Mendes, “Signal recognition and adapted filtering by noncommutative tomography,” arXiv:1211.5986v1 [physics.data-an] (2012).

  21. R. V. Mendes, H. C. Mendes, and T. Araújo, Physica A, 450, 1 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  22. C. Aguirre, G. Franzese, F. Esposito, et al., Aeolian Res., 29, 12 (2017).

    Article  ADS  Google Scholar 

  23. C. Aguirre, P. Pascual, D. Campos, and E. Serrano, BMC Neurosci., 12, Suppl. 1, 297 (2011).

    Article  Google Scholar 

  24. C. Aguirre, P. Pascual, and E. Serrano, BMC Neurosci., 14, Suppl. 1, 36 (2013).

    Google Scholar 

  25. S. V. Revenko, Bull. Exp. Biol. Med., 159, 11 (2015).

    Article  Google Scholar 

  26. V. M. Mikhailov, Heart Rate Variability: A Novel Glimpse into Old Paradigms [in Russian], Neurosoft, Moscow (2017).

    Google Scholar 

  27. R. V. Mendes, Phys. Scr., 90, 074022 (2015).

    Article  ADS  Google Scholar 

  28. V. I. Man’ko and R. V. Mendes, Phys. Lett. A, 263, 53 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  29. V. Namias, J. Inst. Math. Appl., 25, 241 (1980).

    Article  MathSciNet  Google Scholar 

  30. H. M. Ozaktas, M. A. Kutay, and D. Mendlovic, Introduction to the Fractional Fourier Transform and Its Applications, in: P. W. Hawkes (Ed.), Advances in Imaging and Electron Physics, Academic Press, San Diego (1999), Vol. 106, p. 239.

  31. H. M. Ozaktas, O. Arikan, M. A. Kutay, and G. Bozdaki, IEEE Trans. Signal Process., 44, 2141 (1996).

    Article  ADS  Google Scholar 

  32. M. J. Janse, Arch. Mal. Coeur. Vaiss., 92, Spec. No. 1, 9 (1999).

  33. C. Julien, Cardiovasc. Res., 70, 12 (2006).

    Article  Google Scholar 

  34. H. Antoni, Zh. Kardiol., 81, Suppl. 4, 111 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. M. Belousov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belousov, Y.M., Elkin, N.N., Man’ko, V.I. et al. Tomographic Representation of Electrocardiogram Signals. J Russ Laser Res 39, 302–313 (2018). https://doi.org/10.1007/s10946-018-9722-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-018-9722-4

Keywords

Navigation