Skip to main content
Log in

Angle of Arrival Fluctuations for Optical Waves Propagating Through Joint Moderate to Strong Atmospheric Turbulence

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

Satellite laser communication has gained wide attention both at home and abroad. The pointing, acquisition, and tracking (PAT) technology is the kernel of satellite laser communication systems, and the atmospheric layer is a part of the communication channel for satellite-to-ground links. Thus, angle of arrival (AOA) fluctuations caused by atmospheric turbulence inevitably influence long-distance satellite laser communication. Therefore, it is very important to analyze the impact of AOA fluctuations in satellite laser communication systems. According to the actual situation of satellite-to-ground links, a joint atmospheric turbulence power spectrum model is defined that includes Kolmogorov turbulence from the ground to 6 km in portions of the troposphere and non-Kolmogorov turbulence above 6 km in the stratosphere. Based on the extended Rytov theory, we derive the large-scale and small-scale variances of AOA fluctuations propagating in the uplink and downlink channels for a satellite laser communication system and analyze the influence of large zenith angle variations on the AOA fluctuations. It has long been a focus of concern that the expressions for the AOA variance obtained must be concise and of closed form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Toyoshima, W. R. Leeb, H. Kunimori, and T. Takano, Proc. SPIE, 5296, 1 (2005).

    Google Scholar 

  2. K. E. Wilson, J. Kovalik, A. Biswas, and W. Roberts, Proc. SPIE, 6551, 65510B-1 (2007).

    Article  ADS  Google Scholar 

  3. G. Baister, T. Dreischer, and E. Fischer, Proc. SPIE, 5986, 59860Z-1 (2005).

    Article  ADS  Google Scholar 

  4. M. Toyoshima, K. Takizawa, T. Kuri, et al., Proc. SPIE, 6304, 63040B-1 (2006).

    Article  Google Scholar 

  5. T. T. Nielsen and G. Oppenhuser, Proc. SPIE, 4635, 1 (2002).

    Article  ADS  Google Scholar 

  6. W. Du, F. Chen, Z. Yao, et al., J. Russ. Laser Res., 34, 90 (2013).

    Article  Google Scholar 

  7. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media, SPIE Optical Engineering Press, Bellingham (2005).

    Book  Google Scholar 

  8. A. S. Gurvich and M. S. Belen’kii, J. Opt. Soc. Am. A, 12, 2517 (1995).

    Article  ADS  Google Scholar 

  9. W. Du, S. Yu, L. Tan, et al., Opt. Commun., 282, 705 (2009).

    Article  ADS  Google Scholar 

  10. W. Du, H. Zhu, D. Liu, et al., J. Russ. Laser Res., 33, 401 (2012).

    Google Scholar 

  11. L. Cui, B. Xue, S. Zheng, et al., J. Russ. Laser Res., 29, 1091 (2012).

    Google Scholar 

  12. T. Elperin, N. Kleeorin, and I. Rogachevskii, Phys. Rev. E, 53, 3431 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  13. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York (1965).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhe Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, W., Yang, J., Gong, Q. et al. Angle of Arrival Fluctuations for Optical Waves Propagating Through Joint Moderate to Strong Atmospheric Turbulence. J Russ Laser Res 37, 82–90 (2016). https://doi.org/10.1007/s10946-016-9547-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-016-9547-y

Keywords

Navigation