Skip to main content
Log in

Entanglement dynamics of two-mode Gaussian states in a thermal environment

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

Within the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a description of the continuous variable entanglement for a system consisting of two uncoupled modes interacting with a thermal environment. Using the Peres–Simon necessary and sufficient criterion for separability of two-mode Gaussian states, we describe the generation and evolution of entanglement in terms of the covariance matrix for a Gaussian input state. For some values of the temperature of environment, the state keeps for all times its initial type — separable or entangled. In other cases, entanglement generation, entanglement sudden death, or a periodic collapse and revival of entanglement take place. We analyze also the time evolution of the logarithmic negativity, which characterizes the degree of entanglement of the quantum state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. L. Braunstein and P. van Loock, Rev. Mod. Phys., 77, 513 (2005).

    Article  ADS  Google Scholar 

  2. R. Simon, Phys. Rev. Lett., 84, 2726 (2000).

    Article  ADS  Google Scholar 

  3. L. M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Phys. Rev. Lett., 84, 2722 (2000).

    Article  ADS  Google Scholar 

  4. G. Vidal and R. F. Werner, Phys. Rev. A, 65, 032314 (2002).

    Article  ADS  Google Scholar 

  5. G. Giedke, M. M. Wolf, O. Kruger, et al., Phys. Rev. Lett., 91, 107901 (2003).

    Article  ADS  Google Scholar 

  6. S. Olivares, M. G. A. Paris, and A. R. Rossi, Phys. Lett. A, 319, 32 (2003).

    Article  MATH  ADS  Google Scholar 

  7. J. S. Prauzner-Bechcicki, J. Phys. A: Math. Gen., 37, L173 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  8. G. Adesso, A. Serafini, and F. Illuminati, Phys. Rev. A, 73, 032345 (2006).

    Article  ADS  Google Scholar 

  9. F. Benatti and R. Floreanini, J. Phys. A: Math. Gen., 39, 2689 (2006).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. A. V. Dodonov, V. V. Dodonov, and S. S. Mizrahi, J. Phys. A: Math. Gen., 38, 683 (2005).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. S. Maniscalco, S. Olivares, and M. G. A. Paris, Phys. Rev. A, 75, 062119 (2007).

    Article  ADS  Google Scholar 

  12. A. Isar and W. Scheid, Physica A, 373, 298 (2007).

    Article  ADS  Google Scholar 

  13. A. Isar, Eur. J. Phys. Special Topics, 160, 225 (2008).

    Article  ADS  Google Scholar 

  14. V. V. Dodonov, O. V. Man’ko, and V. I. Man’ko, J. Russ. Laser Res., 16, 1 (1995).

    Article  Google Scholar 

  15. F. Benatti and R. Floreanini, Int. J. Mod. Phys. B, 19, 3063 (2005).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. A. Peres, Phys. Rev. Lett., 77, 1413 (1996).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. G. Lindblad, Commun. Math. Phys., 48, 119 (1976).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. A. Isar, A. Sandulescu, H. Scutaru, et al., Int. J. Mod. Phys. E, 3, 635 (1994).

    Article  MathSciNet  ADS  Google Scholar 

  19. A. Sandulescu, H. Scutaru, and W. Scheid, J. Phys. A: Math. Gen., 20, 2121 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  20. A. Isar, J. Russ. Laser Res., 28, 439 (2007).

    Article  Google Scholar 

  21. O. V. Man’ko, V. I. Man’ko, G. Marmo, et al., Phys. Lett. A, 339, 194 (2005).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. A. Isar, Phys. Scr., Topical Issue, 135, 014033 (2009).

    Article  ADS  Google Scholar 

  23. A. Isar, Open Sys. Inform. Dynam., 16, 205 (2009).

    Article  Google Scholar 

  24. A. Isar, Int. J. Quant. Inform., 6, 689 (2008).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurelian Isar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isar, A. Entanglement dynamics of two-mode Gaussian states in a thermal environment. J Russ Laser Res 30, 458–465 (2009). https://doi.org/10.1007/s10946-009-9097-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-009-9097-7

Keywords

Navigation