Skip to main content
Log in

Thermal and mechanical responses of cryogenic targets with different fuel-layer anisotropy during the delivery process

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

The results of mathematical modeling of thermal and mechanical responses of fuel materials in the process of direct drive target delivery into the reaction chamber are presented. Special attention is paid to the influence of fuel-layer anisotropy on the layer degradation that is of critical importance for the optimization of the delivery process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. J. Monsler, Y. A. Merkul'ev, and T. Norimatsu, “Target fabrication and positioning,” in: Energy from Inertial Fusion, International Atomic Energy Agency, Vienna (1995), 151.

    Google Scholar 

  2. D. R. Harding, L. M. Elasky, S. Verbridge, et al., “Formation of deuterium-ice layers in OMEGA targets,” LLE Review, Quarterly Rept., 99, 160 (2004).

    Google Scholar 

  3. I. V. Aleksandrova, E. R. Koresheva, and I. E. Osipov, Laser Part. Beams, 17, 713 (1999).

    ADS  Google Scholar 

  4. I. V. Aleksandrova, S. V. Bazdenkov, and V. I. Chtcherbakov, Laser Part. Beams, 20, 13 (2002).

    Article  ADS  Google Scholar 

  5. I. V. Aleksandrova, S. V. Bazdenkov, V. I. Chtcherbakov, et al., J. Phys. D: Appl. Phys., 37, 1163 (2004).

    Article  ADS  Google Scholar 

  6. E. R. Koresheva, I. E. Osipov, and I. V. Aleksandrova, Laser Part. Beams, 23, 563 (2005).

    Article  ADS  Google Scholar 

  7. V. I. Miachenkov and V. P. Mal'tsev, Methods and Algorithms of Calculating Spatial Constructions [in Russian], Mashinostroenie, Moscow (1984).

    Google Scholar 

  8. S. Nakai and J. Miley, Physics of High Power Laser and Matter Interactions, World Scientific, Singapore (1992).

    Google Scholar 

  9. D. T. Goodin, N. B. Alexander, L. C. Brown, et al., “Demonstrating a target supply for inertial fusion energy,” in: Proceedings of the Third IAEA RC Meeting on Physics and Technology of IFE Targets and Chambers (Daejon, Rep. Korea, October 2004), IAEA-TECDOC-1466, International Atomic Energy Agency, Vienna (September 2005).

    Google Scholar 

  10. I. V. Zolotuhin, Yu. E. Kalinin, and O. V. Stognei, New Directions in Material Science [in Russian], Voronezh State University Press (2000).

  11. H. Gleiter, Nanostruct. Mater., 1, 1 (1992).

    Article  Google Scholar 

  12. H. Gleiter, Acta Mater., 48, 1 (2000).

    Article  Google Scholar 

  13. M. P. Malkov, I. B. Danilov, A. G. Zeldovich, and A. B. Fradkov, Handbook on the Physicotechnical Foundations of Cryogenics [in Russian], Energiya, Moscow (1973).

    Google Scholar 

  14. I. A. Gindin, Ya. D. Starodubov, and V. K. Aksyonov, Metallofizika, 2, 49 (1980).

    Google Scholar 

  15. P. W. McKenty, “Direct-drive cryogenic target implosion performance on OMEGA,” Talk at the 45th Annual Meeting of the American Physical Society (Albuquerque, New Mexico, USA, October 2003).

  16. E. O. Hall, Proc. Phys. Soc., 64, 747 (1951).

    Article  ADS  Google Scholar 

  17. M. J. Petch, J. Iron Steel Inst., 174, 25 (1953).

    Google Scholar 

  18. H. M. Roder, G. E. Chailds, R. D. McCarty, and P. E. Angerhoffer, Survey of the Hydrogen Isotopes below Their Critical Temperatures, NBS Technical Note (1965), Monograph 74.

  19. R. Armstrong, I. Cold, R. M. Dauthwaite, and N. I. Petch, Philos. Mag., 7, 45 (1962).

    Article  ADS  Google Scholar 

  20. V. I. Trefilov, Yu. V. Mil'man, and S. A. Firstov, Physical Basis of Strength of Refractory Metals [in Russian], Naukova Dumka, Kiev (1975).

    Google Scholar 

  21. I. D. Morohov, L. I. Trusov, and V. N. Lapovik, Physical Phenomena in Ultra-Dispersive Matter [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  22. L. A. Alekseeva, V. D. Natsik, R. V. Romashkin, et al., Fiz. Tverd. Tela, 48, 1428 (2006).

    Google Scholar 

  23. J. P. Frank and R. Wanner, Phys. Rev. Lett., 25, 345 (1970).

    Article  ADS  Google Scholar 

  24. S. Landolt-Bornstein, “Elastic, piezoelectric and related constants of crystals,” in: R. F. S. Hearmon and K. H. Hellwege (eds.), New Series, Springer, New York (1966), Vol. III/1.

    Google Scholar 

  25. R. Wanner and H. Meyer, Phys. Lett. A, 41, 189 (1972).

    Article  ADS  Google Scholar 

  26. R. Wanner and H. Meyer, J. Low Temp. Phys., 11, 715 (1973).

    Article  ADS  Google Scholar 

  27. P. C. Souers, Hydrogen Properties for Fusion Energy, Lawrence Livermore National Laboratory, University of California Press, Berkley, Los Angeles, California, USA (1986).

    Google Scholar 

  28. R. W. Petzoldt, Fusion Technol., 34, 831 (1998).

    Google Scholar 

  29. I. V. Aleksandrova, E. R. Koresheva, and I. E. Osipov, J. Moscow Phys. Soc., 3, 85 (1993).

    Google Scholar 

  30. I. E. Osipov, E. R. Koresheva, G. D. Baranov, et al., “A device for cryotarget rep-rate delivery in IFE target chamber,” in: Inertial Fusion Science and Application. State of the Art, Elsevier (2001), p. 810.

  31. “Elements of power plant design for inertial fusion energy,” Final Report of Coordinated Research Project (2000–2004), IAEA-TECDOC-1460, International Atomic Energy Agency (June 2005).

  32. A. M. Oparin, “Numerical modeling of hydrodynamic and kinetic processes at high energy densities,” PhD Thesis, Moscow (1995).

  33. S. Kawata and H. Nakashima, Laser Part. Beams, 10, 479 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Koresheva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aleksandrova, I., Belolipetskiy, A., Koresheva, E. et al. Thermal and mechanical responses of cryogenic targets with different fuel-layer anisotropy during the delivery process. J Russ Laser Res 29, 428–440 (2008). https://doi.org/10.1007/s10946-008-9037-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-008-9037-y

Keywords

Navigation