Skip to main content
Log in

Preparation and application of granular bentonite-eggshell composites for heavy metal removal

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

To develop an efficient, low-cost and green adsorbent for removing heavy metals from acid mine drainage (AMD), bentonite and eggshell were used to prepare a novel granular composite (BEP) adsorbent. Upon coupling of bentonite and eggshell with one another, BEP had the structural characteristics and merits of both bentonite and component CaCO3 of eggshell, and the interlayer spacing of Ca-bentonite increased from 1.46 to 1.78 nm by the addition of polyethylene glycol (PEG). Such characteristics made BEP superior to single montmorillonite or eggshell for significantly higher Pb ion removal ratio of 99.90%, adsorption amount of about 40 mg·g−1 and granulation integrity of 96.90% after adsorption. More importantly, this granular adsorbent was able to enhance the pH value of acid mine drainage from 3.00 to 6.10, and thus the acid neutralization capability of BEP can reduce H+ competitive adsorption. Moreover, the prepared material could overcome the negative effect of fine bentonite used in aqueous medium, and thereby realize the solid-liquid separation of adsorbent and wastewater. In addition, the Elovich kinetic model fitted well for the adsorption process of Pb by BEP, and the possible removal mechanisms included ion exchange, electrostatic adsorption and complexation effects between BEP and Pb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. I. Sánchez-Andrea, J.L. Sanz, M.F.M. Bijmans, A.J.M. Stams, J. Hazard. Mater. (2014) https://doi.org/10.1016/j.jhazmat.2013.12.032

    Article  PubMed  Google Scholar 

  2. A. Esmaeili, M. Mobini, H. Eslami, Appl. Water Sci. (2019) https://doi.org/10.1007/s13201-019-0977-x

    Article  Google Scholar 

  3. L. Liu, B.H. Liu, W. Li, Y. Zhang, J. Mt. Sci-Engl. (2020) https://doi.org/10.1007/s11629-020-5998-2

    Article  Google Scholar 

  4. J. Skousen, C.E. Zipper, A. Rose, P.F. Ziemkiewicz, R. Nairn, L.M. McDonald, R.L. Kleinmann, Mine Water Environ (2017). https://doi.org/10.1007/s10230-016-0417-1

    Article  Google Scholar 

  5. G. Kaur, S.J. Couperthwaite, B.W. Hatton-Jones, G.J. Millar, J. Water Process. Eng. (2018) https://doi.org/10.1016/j.jwpe.2018.01.004

    Article  Google Scholar 

  6. P. Gao, X.X. Sun, E.Z. Xiao, Z.X. Xu, B.Q. Li, W.M. Sun, Environ. Sci. Pollut. R. (2019) https://doi.org/10.1007/s11356-019-04336-6

    Article  Google Scholar 

  7. K.K. Kefeni, T.A.M. Msagati, B.B. Mamba, J. Clean. Prod. (2017) https://doi.org/10.1016/j.jclepro.2017.03.082

    Article  Google Scholar 

  8. J.G. Skousen, P.F. Ziemkiewicz, L.M. McDonald, Extract. Ind. Soc. (2018) https://doi.org/10.1016/j.exis.2018.09.008

    Article  Google Scholar 

  9. W. Fu, G.Z. Ji, H.H. Chen, S.Y. Yang, H. Yang, B. Guo, Z.Q. Huang, J. Environ. Chem. Eng. (2020) https://doi.org/10.1016/j.jece.2020.104072

    Article  Google Scholar 

  10. T.C.B. Pereira, K.B. Dos Santos, W. Lautert-Dutra, L.D. Teodoro, V.O. de Almeida, J. Weiler, I.A.H. Schneider, M.R. Bogo, Chemosphere. (2020) https://doi.org/10.1016/j.chemosphere.2020.126665

  11. Y.R. Dong, J.Z. Di, X.J. Wang, L.D. Xue, Z.H. Yang, X.Y. Guo, M.W. Li, Energies. (2020) https://doi.org/10.3390/en13020439

  12. S. Yan, K.Y. Cheng, C. Morris, G. Douglas, M.P. Ginige, G.Y. Zheng, L.X. Zhou, A.H. Kaksonen, Chemosphere. (2020) https://doi.org/10.1016/j.chemosphere.2020.126570

  13. E. Iakovleva, E. Makila, J. Salonen, M. Sitarz, S.B. Wang, M. Sillanpaa, Eco. Eng. (2015) https://doi.org/10.1016/j.ecoleng.2015.04.046

    Article  Google Scholar 

  14. W. Prastistho, W. Kurniawan, H. Hinode, Curr. Opin. Green. Sust. (2018) https://doi.org/10.4236/gsc.2018.84020

    Article  Google Scholar 

  15. I.O. Ntwampe, K. Moothi, J. Environ. Manage. (2019) https://doi.org/10.1016/j.jenvman.2018.07.019

  16. K. Tohdee, L. Kaewsichan, J. Asadullah Environ. Chem. Eng. (2018) https://doi.org/10.1016/j.jece.2018.04.030

    Article  Google Scholar 

  17. M.D. Niu, G.X. Li, L. Cao, X.D. Wang, W.Z. Wang, J. Clean. Prod. (2020) https://doi.org/10.1016/j.jclepro.2020.1207

    Article  Google Scholar 

  18. R.A. Crane, D.J. Sapsford, Chemosphere. (2018) https://doi.org/10.1016/j.chemosphere.2018.03.042

  19. S.Q. Hong, F.S. Cannon, P. Hou, T. Byrne, C. Nieto-Delgado, Carbon. (2014) https://doi.org/10.1016/j.carbon.2014.02.036

  20. E. Olegario-Sanchez, C.M. Pelicano, Key Eng. Mater. (2017) https://doi.org/10.4028/www.scientific.net/KEM.737.407

  21. D. Limper, G.P. Fellinger, S.O. Ekolu, J. Environ. Chem. Eng. (2018) https://doi.org/10.1016/j.jece.2018.08.064

    Article  Google Scholar 

  22. T.M. Mokgehle, W.M. Gitari, N.T. Tavengwa, J. Environ. Chem. Eng. (2019) https://doi.org/10.1016/j.jece.2019.103473

    Article  Google Scholar 

  23. T.M. Mokgehle, H. Richards, L. Chimuka, W.M. Gitari, N.T. Tavengwa, Min. Eng. (2019) https://doi.org/10.1016/j.mineng.2019.105851

    Article  Google Scholar 

  24. C.B. Gupt, S. Bordoloi, S. Sekharan, A.K. Sarmah, J. Hazard. Mater. (2020) https://doi.org/10.1016/j.jhazmat.2020.122594

    Article  PubMed  Google Scholar 

  25. J.J. Perez, M.E. Villanueva, L. Sanchez, R. Ollier, V. Alvarez, G.J. Copello, Appl. Clay Sci. (2020) https://doi.org/10.1016/j.clay.2020.105703

    Article  Google Scholar 

  26. V. Rizzi, J. Gubitosa, P. Fini, R. Romita, A. Agostiano, S. Nuzzo, P. Cosma, Colloid Surf. A. (2020) https://doi.org/10.1016/j.colsurfa.2020.125060

    Article  Google Scholar 

  27. F. Xiao, X.Q. Cao, X.J. Lyu, L. Li, J. Qiu, Y. Zhang, P. Wang, Q.J. Zhang, Q.B. Wang, Environ. Prog. Sustain. (2020) https://doi.org/10.1002/ep.13358

    Article  Google Scholar 

  28. G.R. Feng, J.C. Ma, X.P. Zhang, Q.F. Zhang, Y.Q. Xiao, Q.L. Ma, S.B. Wang, J. Colloid. Interf. Sci. (2018) https://doi.org/10.1016/j.jcis.2018.11.087

    Article  Google Scholar 

  29. X.H. Zhan, L.P. Xiao, B. Liang, Sustainability-Basel. (2020) https://doi.org/10.3390/su12010018

  30. W. Mo, Q.Z. He, X.J. Su, S.J. Ma, J.P. Feng, Z.L. He, Appl. Clay Sci. (2018) https://doi.org/10.1016/j.clay.2017.12.001

    Article  Google Scholar 

  31. R. Yang, F. Geng, X. Huang, N. Qiu, S.G. Li, H. Teng, L. Chen, H.B. Song, Q. Huang, Food Chem. (2020) https://doi.org/10.1016/j.foodchem.2020.127167

    Article  PubMed  PubMed Central  Google Scholar 

  32. W. Siemiradzka, B. Dolinska, F. Ryszka, Curr. Pharm. Biotechno. (2020) https://doi.org/10.2174/1389201021666200903120835

    Article  Google Scholar 

  33. D.I. Saparuddin, M.H.M. Zaid, S.H. Ab Aziz, K.A. Matori, Appl. Sci-Basel (2020) https://doi.org/10.3390/app10165404

    Article  Google Scholar 

  34. M. Lee, W.S. Tsai, S.T. Chen, J. Clean. Prod. (2020) https://doi.org/10.1016/j.jclepro.2020.121845

    Article  PubMed  PubMed Central  Google Scholar 

  35. N. Sathiparan, Constr. Build. Mater. (2021) https://doi.org/10.1016/j.conbuildmat.2021.123465

    Article  Google Scholar 

  36. R. Zhao, W. Ding, M. Sun, L. Yang, B. Liu, H. Zheng, H. Li, Sep. Purif. Technol. (2022) https://doi.org/10.1016/j.seppur.2022.120487

    Article  Google Scholar 

  37. S. Ramola, T. Belwal, C. Li, Y. Wang, H. Lu, S. Yang, C. Zhou, Sci. Total Environ. (2019) https://doi.org/10.1016/j.scitotenv.2019.136171

    Article  PubMed  Google Scholar 

  38. J. Wang, J. Zhao, X. Qin, Z. Wang, Mater. Today Commun. (2021) https://doi.org/10.1016/j.mtcomm.2020.101742

    Article  Google Scholar 

  39. A. Sdiri, S. Bouaziz, Front. Chem. Sci. Eng. (2014) https://doi.org/10.1007/s11705-014-1455-5

    Article  Google Scholar 

  40. F. Granados-Correa, E. Gutierrez-Bonilla, Desalin. Water Treat. (2020) https://doi.org/10.5004/dwt.2020.25417

    Article  Google Scholar 

  41. H.J. Choi, Water Environ. Res. (2019) https://doi.org/10.1002/wer.1158

    Article  PubMed  Google Scholar 

  42. W.T. Tsai, J.M. Yang, C.W. Lai, Y.H. Cheng, C.C. Lin, C.W. Yeh, Bioresource Technol. (2006) https://doi.org/10.1016/j.biortech.2005.02.050

    Article  Google Scholar 

  43. C. Harripersadth, P. Musonge, Y.M. Isa, M.G. Morales, A. Sayago, J. Chem. Eng. (2020) https://doi.org/10.1016/j.sajce.2020.08.002

    Article  Google Scholar 

  44. P.V. Almeida, A.F. Santos, D.V. Lopes, L.M. Gando-Ferreira, M.J. Quina, J. Water Process. Eng. (2020) https://doi.org/10.1016/j.jwpe.2020.101248

    Article  Google Scholar 

  45. J. Lee, J. Kim, S. Yoo, E. Jho, C. Lee, S. Park, Chemosphere. (2020) https://doi.org/10.1016/j.chemosphere.2021.132267

  46. R. Borges, A. Giroto, R. Klaic, F. Wypych, C. Ribeiro, Adv. Powder Technol. (2021) https://doi.org/10.1016/j.apt.2021.09.013

    Article  Google Scholar 

  47. K. Dayanidhi, P. Vadivel, S. Jothi, N.S. Eusuff, 2020. J. Environ. Manage. (2020) https://doi.org/10.1016/j.jenvman.2020.110962

  48. H.J. Park, S.W. Jeong, J.K. Yang, B.G. Kim, S.M. Lee, J. Environ. Sci. (2007) https://doi.org/10.1016/S1001-0742(07)60234-4

    Article  Google Scholar 

  49. S.E. Kuh, D.S. Kim, Technol. (2000) https://doi.org/10.1080/09593330.2000.9618973

  50. R. Sankaran, P.L. Show, C.W. Ooi, T.C. Ling, C. Shu-Jen, S.Y. Chens, Y.K. Chang, Clean Technol. Environ. (2020) https://doi.org/10.1007/s10098-019-01792-z

    Article  Google Scholar 

  51. M.A. Hamouda, H. Sweidan, M.A. Maraqa, H. El-Hassan, Water-Sui. (2020) https://doi.org/10.3390/w12092517

    Article  Google Scholar 

  52. J. Makuchowska-Fryc, Ecol. Chem. Eng. S. (2019) https://doi.org/10.1515/eces-2019-0012

  53. W.P. Putra, A. Kamari, S.N.M. Yusoff, C.F. Ishak, A. Mohamed, N. Hashim, I.M. Isa, J. Encapsul. Adsorpt. Sci. (2014) https://doi.org/10.4236/jeas.2014.41004

    Article  Google Scholar 

  54. M.A. Al-Ghouti, M.A.M. Khraisheh, M.N.M. Ahmad, S. Allen, J. Hazard. Mater. (2009) https://doi.org/10.1016/j.jhazmat.2008.10.018

    Article  PubMed  Google Scholar 

  55. M.M. Kafshgari, H. Tahermansouri, Colloid. Surface. B. (2017) https://doi.org/10.1016/j.colsurfb.2017.10.019

  56. F.C. Wu, R.L. Tseng, R.S. Juang, Chem. Eng. J. (2009) https://doi.org/10.1016/j.cej.2009.01.014

    Article  Google Scholar 

  57. J. Shang, Y.N. Guo, D.L. He, W. Qu, Y.N. Tang, L. Zhou, R.L. Zhu, J. Hazard. Mater. (2021) https://doi.org/10.1016/j.jhazmat.2021.125706

    Article  PubMed  Google Scholar 

  58. H.K. Boparai, M. Joseph, D.M. O’Carroll, J. Hazard. Mater. (2011) https://doi.org/10.1016/j.jhazmat.2010.11.029

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos. 51764003, 51974096), Natural Science Foundation of Guangxi Province, China (No. 2018GXNSFAA281286) for financing this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guifang Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 11760 kb

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Liu, N., Zhang, S. et al. Preparation and application of granular bentonite-eggshell composites for heavy metal removal. J Porous Mater 29, 817–826 (2022). https://doi.org/10.1007/s10934-022-01208-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-022-01208-2

Keywords

Navigation