Skip to main content
Log in

N-activated carbon fiber produced by oxidation process design and its application as supercapacitor electrode

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

There are three basic steps to activated carbon fibers (ACF) manufacturing, from PAN fiber: oxidation/stabilization, carbonization and activation. Carbon material, specially ACF is a very attractive material to be used as supercapacitor electrode. The literature describes carbon material surface chemistry importance for supercapacitors application, mainly nitrogen groups by N-doping. Oxidation/stabilization is an important non-explored factor that influence the surface chemical functionality. This work describes the influence of oxidation/stabilization process on ACF production, from textile PAN fiber, and the non-doping nitrogen surface chemistry characteristic caused by the oxidation process design. Its textural, structural and surface was evaluated for supercapacitor electrode. The results show that the oxidation degree can be used as a mechanism of textural and surface chemistry control. The surface chemistry is the key of this work, different oxidation conditions can produce nitrogen compounds that help to increase specific capacitance. The tests showed an increase in capacitance higher than 100% in comparison to the standard oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X. Mao, T. Hatton, G. Rutledge, Curr. Org. Chem. 17, 1390 (2013)

    CAS  Google Scholar 

  2. M.A. Amaral Junior, J.T. Matsushima, M.C. Rezende, E.S. Gonçalves, J.S. Marcuzzo, M.R. Baldan, J. Aerosp. Technol. Manag. 9, 423 (2017)

    Google Scholar 

  3. M. Karnan, K. Subramani, P.K. Srividhya, M. Sathish, Electrochim. Acta 228, 586 (2017)

    CAS  Google Scholar 

  4. J.S. Marcuzzo, C. Otani, H.A. Polidoro, S. Otani, Mater. Res. 16, 137 (2013)

    CAS  Google Scholar 

  5. A. Cuña, C. Reyes Plascencia, E. L. da Silva, J. Marcuzzo, S. Khan, N. Tancredi, M. R. Baldan, and C. de Fraga Malfatti, Appl. Catal. B Environ. 202, 95 (2017).

    Google Scholar 

  6. A.C. Rodrigues, E.L. da Silva, S.F. Quirino, A. Cuña, J.S. Marcuzzo, J.T. Matsushima, E.S. Gonçalves, M.R. Baldan, Mater. Res. 22, 1 (2018)

    Google Scholar 

  7. L. Xin, Y. Sun, J. Feng, J. Wang, D. He, Chemosphere 144, 855 (2016)

    CAS  PubMed  Google Scholar 

  8. P.J.M. Carrott, J.M.V. Nabais, M. Ribeiro Carrot, J.A. Pajares, Carbon N. Y. 39, 1543 (2001)

    CAS  Google Scholar 

  9. E. Fitzer, D.J. Müller, Carbon N. Y. 13, 63 (1975)

    CAS  Google Scholar 

  10. N. Yusof, A.F. Ismail, J. Anal. Appl. Pyrolysis 93, 1 (2012)

    CAS  Google Scholar 

  11. T. Burchell, Energia 13, 1–5 (2002)

    Google Scholar 

  12. C.A.R. Brito Júnior, R.R. Fleming, L.C. Pardini, N.P. Alves, Polímeros 22, 364 (2012)

    Google Scholar 

  13. P. Morgan, Carbon Fibers and Their Composites (Taylor & Francis Group, Boca Raton, 2005)

    Google Scholar 

  14. J.M.V. Nabais, P.J.M. Carrott, M.M.L. Ribeiro Carrott, Mater. Chem. Phys. 93, 100 (2005)

    CAS  Google Scholar 

  15. K.G. Latham, A. Rawal, J.M. Hook, S.W. Donne, RSC Adv. 6, 12964 (2016)

    CAS  Google Scholar 

  16. M. Jiang, X. Cao, D. Zhu, Y. Duan, J. Zhang, Electrochim. Acta 196, 699 (2016)

    CAS  Google Scholar 

  17. Y. Chen, Z. Gao, B. Zhang, S. Zhao, Y. Qin, J. Power Sources 315, 254 (2016)

    CAS  Google Scholar 

  18. N. Díez, P. Álvarez, M. Granda, C. Blanco, R. Santamaría, R. Menéndez, Chem. Eng. J. 281, 704 (2015)

    Google Scholar 

  19. K.S. Kim, S.J. Park, J. Electroanal. Chem. 673, 58 (2012)

    CAS  Google Scholar 

  20. E. Frackowiak, Q. Abbas, F. Béguin, J. Energy Chem. 22, 226 (2013)

    CAS  Google Scholar 

  21. Y. Yao, H. Wu, L. Huang, X. Li, L. Yu, S. Zeng, X. Zeng, J. Yang, J. Zou, Electrochim. Acta 246, 606 (2017)

    CAS  Google Scholar 

  22. S. Zhao, T. Yan, H. Wang, G. Chen, L. Huang, J. Zhang, L. Shi, D. Zhang, Appl. Surf. Sci. 369, 460 (2016)

    CAS  Google Scholar 

  23. R. Yadav, C.K. Dixit, J. Sci. Adv. Mater. Dev 2, 141 (2017)

    Google Scholar 

  24. Y. Zhao, R. Nakamura, K. Kamiya, S. Nakanishi, K. Hashimoto, Nat. Commun. 4, 1 (2013)

    CAS  Google Scholar 

  25. P. Tarazona, Surf. Sci. 331–333, 989 (1995)

    Google Scholar 

  26. S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60, 309 (1938)

    CAS  Google Scholar 

  27. D. Ibrahim Abouelamaiem, M.J. Mostazo-López, G. He, D. Patel, T.P. Neville, I.P. Parkin, D. Lozano-Castelló, E. Morallón, D. Cazorla-Amorós, A.B. Jorge, R. Wang, S. Ji, M.M. Titirici, P.R. Shearing, D.J.L. Brett, J. Energy Storage 19, 337 (2018)

    Google Scholar 

  28. S. Jia, Y. Wang, G. Xin, S. Zhou, P. Tian, J. Zang, Electrochim. Acta 196, 527 (2016)

    CAS  Google Scholar 

  29. F. Gao, J. Qu, Z. Zhao, Z. Wang, J. Qiu, Electrochim. Acta 190, 1134 (2016)

    CAS  Google Scholar 

  30. P. Bharathidasan, M.B. Idris, D. Kim, S.R. Sivakkumar, S. Devaraj, FlatChem 11, 24 (2018)

    CAS  Google Scholar 

  31. H. Li, X. Wang, H. Li, S. Lin, B. Zhao, J. Dai, W. Song, X. Zhu, Y. Sun, J. Alloys Compd. 784, 923 (2019)

    CAS  Google Scholar 

  32. J. Yang, Y. Wang, J. Luo, L. Chen, Ind. Crops Prod. 121, 226 (2018)

    CAS  Google Scholar 

  33. B. Liu, Y. Liu, H. Chen, M. Yang, H. Li, J. Power Sources 341, 309 (2017)

    CAS  Google Scholar 

  34. Z. Ye, F. Wang, C. Jia, K. Mu, M. Yu, Y. Lv, Z. Shao, Chem. Eng. J. 330, 1166 (2017)

    CAS  Google Scholar 

  35. X.F. Li, K.Y. Lian, L. Liu, Y. Wu, Q. Qiu, J. Jiang, M. Deng, Y. Luo, Sci. Rep. 6, 1 (2016)

    Google Scholar 

  36. Q. Wei, X. Tong, G. Zhang, J. Qiao, Q. Gong, S. Sun, Catalysts 5, 1574 (2015)

    CAS  Google Scholar 

  37. A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, U. Pöschl, Carbon N. Y. 43, 1731 (2005)

    CAS  Google Scholar 

  38. X. Zhu, S. Yu, K. Xu, Y. Zhang, L. Zhang, G. Lou, Y. Wu, E. Zhu, H. Chen, Z. Shen, B. Bao, S. Fu, Chem. Eng. Sci. 181, 36 (2018)

    CAS  Google Scholar 

  39. L. Zhao, L.Z. Fan, M.Q. Zhou, H. Guan, S. Qiao, M. Antonietti, M.M. Titirici, Adv. Mater. 22, 5202 (2010)

    CAS  PubMed  Google Scholar 

  40. D. Hulicova-Jurcakova, M. Seredych, G.Q. Lu, T.J. Bandosz, Adv. Funct. Mater. 19, 438 (2009)

    CAS  Google Scholar 

  41. Y. Fang, B. Luo, Y. Jia, X. Li, B. Wang, Q. Song, F. Kang, L. Zhi, Adv. Mater. 24, 6348 (2012)

    CAS  PubMed  Google Scholar 

  42. L.F. Chen, X.D. Zhang, H.W. Liang, M. Kong, Q.F. Guan, P. Chen, Z.Y. Wu, S.H. Yu, ACS Nano 6, 7092 (2012)

    CAS  PubMed  Google Scholar 

  43. E. Frackowiak, Phys. Chem. Chem. Phys. 9, 1774 (2007)

    CAS  PubMed  Google Scholar 

  44. F. Xiao, J. Song, H. Gao, X. Zan, R. Xu, H. Duan, ACS Nano 6(1), 100–110 (2012)

    CAS  PubMed  Google Scholar 

  45. U. Byambasuren, Y. Jeon, D. Altansukh, Y. Ji, Y. Shul, Korean J. Chem. Eng. 33, 1831 (2016)

    CAS  Google Scholar 

  46. C. Kim, K. Kim, and J. H. Moon, Sci. Rep. (2017). https://doi.org/10.1038/s41598-017-14686-1

  47. K.B. Li, D.W. Shi, Z.Y. Cai, G.L. Zhang, Q.A. Huang, D. Liu, C.P. Yang, Electrochim. Acta 174, 596 (2015)

    CAS  Google Scholar 

  48. A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Renew. Sustain. Energy Rev. 58, 1189 (2016)

    Google Scholar 

  49. P.L. Taberna, P. Simon, J.F. Fauvarque, J. Electrochem. Soc. 150, A292 (2003)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank INPE facilities, FAPESP and CAPES for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. Rodrigues.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, A.C., Munhoz, M.G.C., Pinheiro, B.S. et al. N-activated carbon fiber produced by oxidation process design and its application as supercapacitor electrode. J Porous Mater 27, 141–149 (2020). https://doi.org/10.1007/s10934-019-00799-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-019-00799-7

Keywords

Navigation