Skip to main content
Log in

Hierarchically porous TiO2-MnTiO3/hollow activated carbon fibers heterojunction photocatalysts with synergistic adsorption-photocatalytic performance under visible light

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

An ideal photocatalysts is expected to not only involve nanoscale subunits with high catalytic activity, but also possess a 3D hierarchically porous microstructure to obtain more activated sites as well as easy recovery. Herein, we demonstrated an efficient route to synthesize self-support hierarchically porous TiO2-MnTiO3/HACFs (hollow activated carbon fibers) heterojunction photocatalysts with tunable band gaps by a facile biotemplated method. The heterojunctions with suitable TiO2/MnTiO3 ratios on HACFs supports had fascinating 3D hollow fiber morphology and exhibited exceptionally synergistic adsorption-photocatalytic activities in visible-light degradation of methylene blue (MB). The photocatalytic degradation rate of MB could reach 99.1% in 60 min under visible light irradiation and cycled experiments showed stably photocatalytic activities. The enhanced photocatalytic performance could be attributed to the high efficiency of electron separation, the high specific surface area and strong adsorption ability toward the MB molecule, and the tunable visible light absorption of TiO2-MnTiO3/HACFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. O. Legrini, E. Oliveros, A.M. Braun, Photochemical processes for water treatment. Chem. Rev. 93, 671–698 (1993)

    Article  CAS  Google Scholar 

  2. M. M. Mohamed, I. Othman, R. M. Mohamed, Synthesis and characterization of MnOx/TiO2 nanoparticles for photocatalytic oxidation of indigo carmine dye, J. Photochem. Photobiol. A 191 (2007) 153–161.

    Article  CAS  Google Scholar 

  3. S. Ghasemi, S. Rahimnejad, S. Rahman Setayesh, S. Rohani, M.R. Gholami, Transition metal ions effect on the properties and photcatalytic activity of nanocrystalline TiO2 prepared in an ionic liquid. J. Hazard. Mater. 172, 1573–1578 (2009)

    Article  CAS  Google Scholar 

  4. Ma, H., Liu, W., Zhu, S. et al. Biotemplated hierarchical TiO2–SiO2 composites derived from Zea mays Linn. for efficient dye photodegradation. J. Porous Mater. 20, 1205–1215 (2013)

    Article  CAS  Google Scholar 

  5. J.P. Xu, S.B. Shi, L. Li, Effect of manganese ions concentration on the anatase–rutile phase transformation of TiO2 films, A highly uniform ZnO/NaTaO3 nanocomposite: Enhanced self-sensitized degradation of colored pollutants under visible light. J. Phys. Chem. Solids 70, 511–515 (2009)

    Article  CAS  Google Scholar 

  6. G. Xing, C. Tang, B. Zhang, L. Zhao, Y. Su, X. Wang, A highly uniform ZnO/NaTaO3 nanocomposite: Enhanced self-sensitized degradation of colored pollutants under visible light. J. Alloys Compd. 647, 287–294 (2015)

    Article  CAS  Google Scholar 

  7. H. Lu, L. Xu, B. Wei, M. Zhang, H. Gao, W. Sun, Enhanced photosensitization process induced by the p–n junction of Bi2O2CO3/BiOCl heterojunctions on the degradation of rhodamine B. Appl. Surf. Sci. 303, 360–366 (2014)

    Article  CAS  Google Scholar 

  8. B.M. Rajbongshi, A. Ramchiary, S.K. Samdarshi, Influence of N-doping on photocatalytic activity of ZnO nanoparticles under visible light irradiation. Mater. Lett. 134, 111–114 (2014)

    Article  CAS  Google Scholar 

  9. W. Wang, H. Zhang, L. Wu, J. Li, Y. Qian, Enhanced performance of dye-sensitized solar cells based on TiO2/MnTiO3/MgTiO3 composite photoanode. J. Alloys Compd. 657, 53–58 (2016)

    Article  CAS  Google Scholar 

  10. W. Dong, D. Wang, L. Jiang, H. Zhu, H. Huang, J. Li, H. Zhao, C. Li, B. Chen, G. Deng, Synthesis of F doping MnTiO3 nanodiscs and their photocatalytic property under visible light. Mater. Lett. 98, 265–268 (2013)

    Article  CAS  Google Scholar 

  11. K.N. Bae, S.I. Noh, H.J. Ahn, T.Y. Seong, Effect of MnTiO3 surface treatment on the performance of dye-sensitized solar cells. Mater. Lett. 96, 67–70 (2013)

    Article  CAS  Google Scholar 

  12. S.M. Rodriguez, J.B. Galvez, M.I. Rubio, Engineering of solar photocatalytic collectors. Sol. Energy 77, 513–524 (2004)

    Article  Google Scholar 

  13. J. Ryu, W. Choi, K.H. Choo, A pilot-scale photocatalyst-membrane hybrid reactor: performance and characterization. Water Sci. Technol. 51, 491–497 (2005)

    CAS  Google Scholar 

  14. J.H. Jeon, S.D. Kim, T.H. Lim, D.H. Lee, Degradation of trichloroethylene by photocatalysis in an internally circulating slurry bubble column reactor. Chemosphere 60, 1162–1168 (2005)

    Article  CAS  Google Scholar 

  15. T. Torimoto, S. Ito, S. Kuwabata, H. Yoneyama, Photocatalytic activities of the nano-sized TiO2-supported Y-zeolites. Environ. Sci. Technol. 30, 1275–1281 (1996)

    Article  CAS  Google Scholar 

  16. Z. Ding, X. Hu, P.L. Yue, G.Q. Lu, P.F. Greenfield, Synthesis of anatase TiO2 supported on porous solids by chemical vapor deposition. Catal. Today 68, 173–182 (2001)

    Article  Google Scholar 

  17. W. Zhang, L. Zou, L. Wang, Novel charge-driven self-assembly method to prepare visible-light sensitive TiO2/activated carbon composites for dissolved organic compound removal. Chem. Eng. J. 168, 485–492 (2011)

    Article  CAS  Google Scholar 

  18. G. Xue, H.H. Liu, Q.Y. Chen, Synergy between surface adsorption and photocatalysis during degradation of humic acid on TiO2/activated carbon composites. J. Hazard. Mate.r 186, 765–772 (2011)

    Article  CAS  Google Scholar 

  19. D. Huang, Y. Miyamoto, T. Matsumoto, T. Tojo, Preparation and characterization of high-surface-area TiO2/activated carbon by low-temperature impregnation. Sep. Purif. Technol. 78, 9–15 (2011)

    Article  CAS  Google Scholar 

  20. Y.Z. Zhang, S.H. Deng, B.Y. Sun, Preparation of TiO2-loaded activated carbon fiber hybrids and application in a pulsed discharge reactor for decomposition of methyl orange. J. Colloid Interface Sci. 347, 260–266 (2010)

    Article  CAS  Google Scholar 

  21. S. H. Yao, J. Y. Li, Z. L. Shi, Immobilization of TiO2 nanoparticles on activated carbon fiber and its photodegradation performance for organic pollutants. Particuology 8, 272–278 (2010)

    Article  CAS  Google Scholar 

  22. J. Matos, E.G. Lopez, L. Palmisano, Influence of activated carbon in TiO2 and ZnO mediated photo-assisted degradation of 2-propanol in gas–solid regime. Appl. Catal. B 99, 170–180 (2010)

    Article  CAS  Google Scholar 

  23. J. Matos, J. Laine, J.M. Herrmann, D. Uzcategui, J.L. Brito, Influence of activated carbon upon titania on aqueous photocatalytic consecutive runs of phenol photodegradation. Appl. Catal. B 70, 461–469 (2007)

    Article  CAS  Google Scholar 

  24. T.T. Lim, P.S. Yap, M. Srinivasan, A.G. Fane, TiO2/AC composites for synergistic adsorption-photocatalysis processes: present challenges and further developments for water treatment and reclamation. Crit. Rev. Environ. Sci. Technol. 41, 1173–1230 (2011)

    Article  CAS  Google Scholar 

  25. B. Gao, P.S. Yap, T.M. Lim, T.T. Lim, Adsorption-photocatalytic degradation of Acid Red 88 by supported TiO2: Effect of activated carbon support and aqueous anions. Chem. Eng. J. 171, 1098–1107 (2011)

    Article  CAS  Google Scholar 

  26. J. Araña, J.M. Doña-Rodríguez, E. Tello Rendón, TiO2 activation by using activated carbon as a support: Part I. Surface characterisation and decantability study. Appl. Catal. B 44, 161–172 (2003)

    Article  Google Scholar 

  27. J. Araña, J.M. Doña-Rodríguez, E. Tello Rendón, TiO2 activation by using activated carbon as a support: Part II. Photoreactivity and FTIR study. Appl. Catal. B 44, 153–160 (2003)

    Article  Google Scholar 

  28. F.R. Reinoso, A.C. Pastor, H. Marsh, A. Huidobro, Preparation of activated carbon cloths from viscous rayon: Part III. Effect of carbonization on CO2 activation. Carbon 38, 397–406 (2000)

    Article  Google Scholar 

  29. L. Kernazhitsky, V. Shymanovska, T. Gavrilko, G. Puchkovska, Optical and photocatalytic properties of titanium–manganese mixed oxides. Mater. Sci. Eng. B 175, 48–55 (2010)

    Article  CAS  Google Scholar 

  30. K-N.P. Kumar, K. Keizer, A.J. Burggraaf, T. Okubo, H. Nagamoto, S. Morooka, Densification of nanostructured titania assisted by a phase transformation. Nature 358, 48–51 (1992)

    Article  CAS  Google Scholar 

  31. N. Shimodaira, A. Masui, Raman spectroscopic investigations of activated carbon materials. J. Appl. Phys. 92, 902–908 (2002)

    Article  CAS  Google Scholar 

  32. N. Mahdjoub, N. Allen, P. Kelly, V. Vishnyakov, SEM and Raman study of thermally treated TiO2 anatase nanopowders: Influence of calcination on photocatalytic activity, J. Photochem. Photobiol. A 211 (2010) 59–64.

    Article  CAS  Google Scholar 

  33. Z.Q. Song, S.B. Wang, W. Yang, Synthesis of manganese titanate MnTiO3 powders by a sol-gel-hydrothermal method. Mater. Sci. Eng. B 113, 121–124 (2004)

    Article  Google Scholar 

  34. S.H. Wang, S. Zhou, Photodegradation of methyl orange by phtotcatalyst of CNTs/P-TiO2 under UV and visible-light irradiation. J. Hazard. Mater. 185, 77–85 (2011)

    Article  CAS  Google Scholar 

  35. H.W. Nesbitt, D. Banerjee, Interpretation of XPS Mn (2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation. Am. Mineral 83, 305–315 (1998)

    Article  CAS  Google Scholar 

  36. S.J. Gregg, K.S.W. Sing, Adsorption, Surface Area and Porosity, Second edn. (Academic Press, London, 1982)

    Google Scholar 

  37. F. Detcheverry, E. Kierlik, M. L. Rosinberg, The physics of capillary condensation in disordered mesoporous materials: A unifying theoretical description. Adsorption 11, 115–119 (2005)

    Article  Google Scholar 

  38. C. Pelekani, V.L. Snoeyink, Competitive adsorption in natural water: Role of activated carbon pose size. Water Res. 33, 1209–1215 (1999)

    Article  CAS  Google Scholar 

  39. P. Simoncic, T. Armbruster, Cationic methylene blue incorporated into zeolite mordenite-Na: a single crystal X-ray study. Micro. Meso. Mater. 81, 87–95 (2005)

    Article  CAS  Google Scholar 

  40. S.X. Liu, X.Y. Chen, X. Chen, A TiO2/AC composite photocatalyst with high activity and easy separation prepared by a hydrothermal method. J. Hazard. Mater. 143, 257–263 (2007)

    Article  CAS  Google Scholar 

  41. J.M. Gallardo-Amores, T. Armaroli, G. Ramis, E. Finocchio, G. Busca, A study of anatase–supported Mn oxide as catalysts for 2-propanol oxidation. Appl. Catal. B 22, 249–259 (1999)

    Article  CAS  Google Scholar 

  42. S. Langergen, B.K Svenska, Zur theorie der sogenannten adsoption geloester stoffe. Veteruskapsakad Handlingar 24, 1–39 (1898)

    Google Scholar 

  43. Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes. Process Biochem. 34, 451–465 (1999)

    Article  CAS  Google Scholar 

  44. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403 (1918)

    Article  CAS  Google Scholar 

  45. T.W. Weber, R.K. Chakkravorti, Pore and solid diffusion models for fixed-bed absorbers. J. AIChE 20, 228–233 (1974)

    Article  CAS  Google Scholar 

  46. H.M.F. Freundlich, Over the adsorption in solution. J. Phys. Chem. 57 A, 385–470 (1906)

    Google Scholar 

  47. Y. Xu, M.A.A. Schoonen, The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 85, 543–556 (2000)

    Article  CAS  Google Scholar 

  48. Y. Ma, Y. Guo, H. Jiang, D. Qu, J. Liu, W. Kang, Y. Yi, W. Zhang, J. Shi, Z. Han, Preparation of network-like ZnO-FeWO4 mesoporous heterojunctions with tunable band gaps and their enhanced visible light photocatalytic performance. New J. Chem. 39, 5612–5620 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the HKSAR Government RGC-GRF Grant (CUHK14303914) and by the Direct Grant (Project Code: 4053076) from the Faculty of Science, The Chinese University of Hong Kong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dickon H. L. Ng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Ng, D.H.L., Kwong, F.L. et al. Hierarchically porous TiO2-MnTiO3/hollow activated carbon fibers heterojunction photocatalysts with synergistic adsorption-photocatalytic performance under visible light. J Porous Mater 24, 1047–1059 (2017). https://doi.org/10.1007/s10934-016-0345-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-016-0345-2

Keywords

Navigation