Skip to main content
Log in

Effects of seeding on the fast crystallization of ZSM-11 microspheres with intergrowth morphology and small particle size

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

A facile and efficient route toward the synthesis of submicron ZSM-11 with intergrowth morphology and controllable particle size is developed, which is characterized by adding micron ZSM-11 microspheres into a little spot of TBA-contained [(TBA)2O/SiO2 = 0.005] gel precursors. By tuning the seed contents and aging period duration at ambient temperature, well crystallized ZSM-11 zeolites with adjustable particle size from 0.2 to 1.0 μm were obtained. Compared with the micron seed particles, the prepared submicron ZSM-11 exhibited both enhanced external surface area and mesopore volumes. The existence of seed particles was found to provide surface area for the formation of new nuclei, while the aging period benefits the occurrence of nucleation behavior, both of which are responsible for the fast crystallization rate as well as the small particle size of products. Besides homogeneous seeds, heterogeneous seeds, such as ZSM-5 and Y can also do a contribution to accelerate the crystallization rate. It was found that the common building units between ZSM-5 seed and ZSM-11 product are favorable for both the nucleation and crystal growth process, while the locally arranged structure of fragments from Y seed are mainly responsible for the crystal growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T.L.M. Maesen, M. Schenk, T. Vlugt, B. Smit, J. Catal. 203, 281 (2001)

    Article  CAS  Google Scholar 

  2. C. Li, C. Yang, H. Shan, Ind. Eng. Chem. Res. 46, 4914 (2007)

    Article  CAS  Google Scholar 

  3. Y. Gu, N. Cui, Q. Yu, C. Li, Q. Cui, Appl. Catal. A Gen. 429–430, 9 (2012)

    Article  Google Scholar 

  4. Q. Yu, C. Cui, Q. Zhang, J. Chen, Y. Li, J. Sun, C. Li, Q. Cui, C. Yang, H. Shan, J. Energy Chem. 22, 761 (2013)

    Article  CAS  Google Scholar 

  5. X. Meng, Q. Yu, Y. Gao, Q. Zhang, C. Li, Q. Cui, Catal. Commun. 61, 67 (2015)

    Article  CAS  Google Scholar 

  6. J. Groen, L.A.A. Peffer, J. Moulijn, J. Pérez-Ramırez, Microporous Mesoporous Mater. 69, 29 (2004)

    Article  CAS  Google Scholar 

  7. Y. Tao, H. Kanoh, L. Abrams, K. Kaneko, Chem. Rev. 106, 896 (2006)

    Article  CAS  Google Scholar 

  8. D. Wang, X. Li, Z. Liu, Y. Zhang, Z. Xie, Y. Tang, J. Colloid Interface Sci. 350, 290 (2010)

    Article  CAS  Google Scholar 

  9. J. Groen, L.A. Peffer, J. Moulijn, J. Pérez-Ramırez, Microporous Mesoporous Mater. 69, 29 (2004)

    Article  CAS  Google Scholar 

  10. M. Kustova, K. Egeblad, K. Zhu, C.H. Christensen, Chem. Mater. 19, 2915 (2007)

    Article  CAS  Google Scholar 

  11. H. Zhu, Z. Liu, D. Kong, Y. Wang, Z. Xie, J. Phys. Chem. C 112, 17257 (2008)

    Article  CAS  Google Scholar 

  12. C. Yin, D. Tian, M. Xu, Y. Wei, X. Bao, Y. Chen, F. Wang, J. Colloid Interface Sci. 397, 108 (2013)

    Article  CAS  Google Scholar 

  13. L. Tosheva, V.P. Valtchev, Chem. Mater. 17, 2494 (2005)

    Article  CAS  Google Scholar 

  14. A.W. Song, R. Justice, C. Jones, V. Grassian, S. Larsen, Langmuir 20, 8301 (2004)

    Article  CAS  Google Scholar 

  15. I. Schmidt, C. Madsen, C.J.H. Jacobsen, Inorg. Chem. 39, 2279 (2000)

    Article  CAS  Google Scholar 

  16. S. Mintova, N. Petkov, K. Karaghiosoff, T. Bein, Mater. Sci. Eng., C 19, 111 (2002)

    Article  Google Scholar 

  17. G.-T. Vuong, T.-O. Do, J. Am. Chem. Soc. 129, 3810 (2007)

    Article  CAS  Google Scholar 

  18. G.-T. Vuong, V.-T. Hoang, D.-T. Nguyen, T.-O. Do, Appl. Catal. A Gen. 382, 231 (2010)

    Article  CAS  Google Scholar 

  19. Z. Adem, F. Guenneau, M.-A. Springuel-Huet, A. Gédéon, Microporous Mesoporous Mater. 114, 337 (2008)

    Article  CAS  Google Scholar 

  20. F. Di Renzo, Catal. Today 41, 37 (1998)

    Article  Google Scholar 

  21. Q. Li, D. Creaser, J. Sterte, Microporous Mesoporous Mater. 31, 141 (1999)

    Article  CAS  Google Scholar 

  22. Q. Li, B. Mihailova, D. Creaser, J. Sterte, Microporous Mesoporous Mater. 43, 51 (2001)

    Article  CAS  Google Scholar 

  23. S. Mintova, N. Petkov, K. Karaghiosoff, T. Bein, Microporous Mesoporous Mater. 50, 121 (2001)

    Article  CAS  Google Scholar 

  24. J.P. Dong, J. Zou, Y.C. Long, Microporous Mesoporous Mater. 57, 9 (2003)

    Article  CAS  Google Scholar 

  25. X. Guo, Y. Liu, X. Wang, J. Dalian Univ. Technol. 41, 426 (2001)

    CAS  Google Scholar 

  26. S. Gonthier, R.W. Thompson, Stud. Surf. Sci. Catal. 85, 43 (1994)

    Article  CAS  Google Scholar 

  27. Q. Xu, Y. Gong, W. Xu, J. Xu, F. Deng, T. Dou, J. Colloid Interface Sci. 358, 252 (2011)

    Article  CAS  Google Scholar 

  28. N. Ren, Z.J. Yang, X.C. Lv, J. Shi, Y.H. Zhang, Y. Tang, Microporous Mesoporous Mater. 131, 103 (2010)

    Article  CAS  Google Scholar 

  29. G. Majano, A. Darwiche, S. Mintova, V. Valtchev, Ind. Eng. Chem. Res. 48, 7084 (2009)

    Article  CAS  Google Scholar 

  30. Y. Tang, B. Li, N. Zhang, S. Wang, Y. Wen, P. Jin, X. Wang, CrystEngComm 14, 3854 (2012)

    Article  CAS  Google Scholar 

  31. D.P. Serrano, J. Aguado, J.M. Escola, J.M. Rodríguez, Á. Peral, Chem. Mater. 18, 2462 (2006)

    Article  CAS  Google Scholar 

  32. B. Xie, H. Zhang, C. Yang, S. Liu, L. Ren, L. Zhang, X. Meng, B. Yilmaz, U. Müller, F.S. Xiao, Chem. Commun. 47, 3945 (2011)

    Article  CAS  Google Scholar 

  33. M.M.J. Treacy, J.B. Higgins, Collection of simulated XRD powder patterns for zeolites, 2nd edn. (Elsevier, Amsterdam, 2001), pp. 228–239

    Book  Google Scholar 

  34. J. Aguado, D. Serrano, J. Rodriguez, Microporous Mesoporous Mater. 115, 504 (2008)

    Article  CAS  Google Scholar 

  35. C.S. Cundy, P.A. Cox, Microporous Mesoporous Mater. 82, 1 (2005)

    Article  CAS  Google Scholar 

  36. J. Yang, S. Yu, H. Hu, Y. Zhang, J. Lu, J. Wang, D. Yin, Chem. Eng. J. 166, 1083 (2011)

    Article  CAS  Google Scholar 

  37. H. Pan, Q. Pan, Y. Zhao, Y. Luo, X. Shu, M. He, Ind. Eng. Chem. Res. 49, 7294 (2010)

    Article  CAS  Google Scholar 

  38. G. Kokotailo, P. Chu, S. Lawton, W. Meier, Nature 275, 119 (1978)

    Article  CAS  Google Scholar 

  39. K. Foger, J. Sanders, D. Seddon, Zeolites 4, 337 (1984)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 21507004). The authors also gratefully appreciate financial support from the Fundamental Research Funds for the Central Universities (FRF-TP-15-046A1) and the special project on air pollution control of Beijing Municipal Science and Technology Commission (No. Z141100001014006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingjun Yu or Chunyi Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Q., Li, C., Tang, X. et al. Effects of seeding on the fast crystallization of ZSM-11 microspheres with intergrowth morphology and small particle size. J Porous Mater 23, 273–284 (2016). https://doi.org/10.1007/s10934-015-0079-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-015-0079-6

Keywords

Navigation